
1

SDMX GUIDELINES

GUIDELINES ON THE
VERSIONING OF SDMX ARTEFACTS

VERSION 1.0

15/11/2015

© SDMX 2015
http://www.sdmx.org/

2

Contents

1. Introduction ... 2
2. Numbering system and syntax .. 3
3. Criterion for incrementing the version number ... 3

a. Description of backward/forward compatibility ... 3
b. Cost-benefit analysis for a major version change .. 4
c. Synthesis based on the above syntax and criterion .. 4

4. Types of artefact changes and their versioning impact ... 4
5. How versioning works for inter-dependent artefacts ... 6

a. Impact on parent artefact when child artefact version changes ... 6
b. Addition or removal of referenced artefacts .. 7

6. Appendix - Examples .. 8

1. Introduction

This document aims at providing guidelines on how to version SDMX artefacts inspired by
"semantic versioning", i.e. a formal convention for specifying compatibility between the different
versions of a “versionable” artefact (a SDMX artefact that has an associated version number). There
are slight differences when compared to semantic versioning regarding the numbering and the
definition of the criterion triggering the changes in numbering.

A three-component versioning system is proposed, with the third component being optional. The
criterion for deciding which component is impacted is the severity of the change.

Versioning is central to SDMX because it guarantees the stability of references to SDMX artefacts.
This is of the utmost importance given the sometimes strong dependencies between artefacts,
especially in Data Structure Definitions (DSDs).

The document contains three main recommendations:
• numbering system and syntax;
• types of artefact changes and their versioning impact;
• how versioning works for inter-dependent artefacts.

The document’s appendix contains examples of several types of changes and their versioning
impact.

3

2. Numbering system and syntax

The proposed versioning system is based on the Semantic Versioning 2.0 specification1, namely:

MAJOR.MINOR.PATCH2

However, as the "patch" component will generally not be used extensively in SDMX, it is proposed
to limit the coding to MAJOR.MINOR as long as no patches are implemented. Concretely, this
means that version number 2.1.0 will be abridged to 2.1 as long as no patch is implemented. When a
patch is implemented, the version number then becomes 2.1.1. At subsequent MAJOR change in the
versioning the PATCH component will disappear (2.4.7 � 3.0).

The most severe change has always precedence over other types of changes. For example, if the
MAJOR and MINOR parts of the version number are impacted by changes, only the MAJOR
component will be impacted. This means that version 3.2.1 will become 4.0.

When an artefact is published in production for the first time, the version number of the artefact
should be 1.0.

3. Criterion for incrementing the version number

The criterion for deciding which component is impacted is the severity of the change, i.e. the
possibility of maintaining backward and forward compatibility between the different versions of an
artefact.

a. Description of backward/forward compatibility
Backward compatibility is defined as: An item (e.g. a data message) that was produced and
validated with the previous version of an artefact (e.g. a DSD) can still be successfully validated
using the newest version of the same artefact. For example, a data message produced and validated
with a DSD version 1.1 is still valid against the same DSD (same id and Agency) upgraded to
version 1.2.

Forward compatibility is defined as: An item (e.g. a data message) that is produced and validated
with the new version of an artefact (e.g. a DSD) can also be validated using the previous version of
the same artefact. For example, a data message produced and validated with a DSD version 1.1 is
also valid against the same DSD (same id and Agency) having version 1.0 (an earlier version).

Given the syntax specified above, namely MAJOR.MINOR.PATCH, implementers should
increment the:

• MAJOR version when changes are not backward compatible;

• MINOR version when changes are backward but not forward compatible;
• PATCH version when minor changes (e.g. text clarifications, correction of typos) are both

backward and forward compatible.

1 http://www.semver.org
2 It should be noted that the SDMX standard specifies no limitation as to the number of components in the versioning
system. The option proposed here is thus nothing but a recommended convention.

4

b. Cost-benefit analysis for a major version change
The cost of imposing a “major” change should be balanced against the benefit of retaining
backward compatibility, for example by not deleting codes used in existing data exchanges or by
deleting or replacing codes only through a concerted effort of all data exchange partners.

c. Synthesis based on the above syntax and criterion

Change Severity Version Impact Description Example

Major +.0 Neither backward nor forward compatibility 1.2 ���� 2.0

Minor N. + Backward but not forward compatibility 1.0 ���� 1.1

Patch N.M.+ Backward and forward compatibility 1.2 ���� 1.2.1

4. Types of artefact changes and their versioning impact

As a general rule insignificant changes (e.g. textual clarifications or typos) will result in an
increment of the patch component of the versioning system (i.e. N.M.+).

CODE L IST (CL)

Type of Change Impact Comments

Addition into an existing CL of one or more
new codes not having the
CodeList:Code:ParentCode attribute

Minor : N.+(3)

Data exchanged/disseminated using the old CL can still be
exchanged/disseminated using the new CL

Addition of one or more new hierarchies
represented using the
CodeList:Code:ParentCode attribute (not
using the Hierarchical Code List artefact)

Minor : N.+(3)

Data exchanged/disseminated using the old CL can still be
exchanged/disseminated using the new CL as already
existing hierarchies still represent the same aggregations

Addition of one or more new codes into
existing hierarchies represented using the
CodeList:Code:ParentCode attribute (not
using the Hierarchical Code List artefact)

Major : +.0
After the change, the parent code for the changed hierarchy
does not represent the same aggregation any more, thus
resulting in a break in backward compatibility

Aggregation, disaggregation, reorganisation
or removal of one or more codes Major : +.0

Data exchanged/disseminated using an old version of the
CL can no longer be exchanged/disseminated using the new
version of the CL

3 The overall impact on compatibility should be assessed when there are several “minor” version impact changes. For
example, it may be that the effect of adding several new Code List or HCL codes results in an implicit change in the
meaning of existing Code List or HCL codes which may not be completely backward compatible, therefore (depending
on the analysis) the overall version impact may be “Major +.0”.

5

HIERARCHICAL CODE L IST (HCL)

Type of Change Impact Comments

Addition of new hierarchies in the HCL.
Existing hierarchies are unaffected

Minor : N.+(3)
 Data represented using the old HCL can still be represented

using the new HCL

Addition of codes into existing hierarchies in
the HCL. Existing hierarchies are thus
affected

Major : +.0
The HCL resulting from this change does not represent the
same aggregation any more, thus breaking backward
compatibility

Removal of one or more codes in the HCL or
removal of one or more codes in the
referenced code lists

Major : +.0
Data represented using the old HCL can no longer be
represented using the new HCL, thus resulting in a break in
backward compatibility

Addition, modification or removal of one or
more hierarchical levels

Major: +.0 The reorganisation of codes within hierarchies has a
significant impact on the code aggregations

CONCEPT SCHEME (CS)

Type of change Impact Comments

Addition of one or more new concepts in an
existing CS

Minor : N.+ Data exchanged/disseminated using the old version of the
CS can still be exchanged/disseminated using the new CS

Removal of one or more existing concepts Major: +.0
Data exchanged/disseminated using the old version of the
CS can no longer be exchanged/disseminated using the new
version with less concepts

DATA STRUCTURE DEFINITION (DSD)

Type of change Impact Comments

Addition of a dimension Major : +.0

Adding a new dimension has a strong impact because a
dimension represents the identifier of a dataset, thus
requiring a remodelling of the data as existing structural
validation will fail

Addition of a mandatory attribute Major : +.0 If the attribute is mandatory, the situation is the same as
under point “Addition of a dimension”

Addition of a conditional attribute Minor : N.+ If the attribute is conditional backward compatibility is
maintained

Removal of a dimension or attribute Major : +.0 Whatever the type of component, the change does not
guarantee backward compatibility

For concrete examples, see the Appendix.

6

5. How versioning works for inter-dependent artefacts

This section describes how version changes to inter-dependent or parent/child artefacts affect each
other. For example, how a Concept Scheme is affected when one of the Code Lists that it references
changes version.

Some artefacts have references to other artefacts. For example:

• each of a Concept Scheme’s Concepts may reference a Code List;
• a DSD can reference one or more Concept Schemes;
• each of a DSD’s Concepts may reference a Code List. (Note that if a Concept-Code List

reference exists both in a DSD and a Concept Scheme, the Concept-Code List reference in
the DSD overrides the reference in the Concept Scheme);

• a Hierarchical Code List references one or more Code Lists whose codes are arranged in the
hierarchical structure.

In the text below, the following concepts will be used:

• Parent artefact: an artefact that contains a reference to another artefact. For example, a
Concept Scheme is a parent to a Code List that it references, and the Code List is the child;

• Child artefact: an artefact that is referenced by another artefact. For example, a Code List is
a child of a Concept Scheme that contains a reference to it, and the Concept Scheme is the
parent.

It is important to note that a new version of a child artefact does not automatically trigger a version
update of the parent artefact. A version change to the parent artefact is made only if the new version
of the child artefact is adopted by the parent artefact.

a. Impact on parent artefact when child artefact version changes
The replacement of a reference with a different reference has the same impact for every artefact.

ALL ARTEFACTS

Type of change Impact Comments

Replacement of a child
artefact having a different
version, but same id and
Agency

The child artefact
version change is
replicated in the
parent artefact

If a child artefact (e.g. a Code List) has a minor version change, then
the parent artefact (e.g. a Concept Scheme) should also have a minor
version change.

If there are several child artefact version changes, the most severe
impact is replicated in the parent artefact. For example, if two Code
Lists have minor changes, and one Code List has a major change at
the same time, the parent Concept Scheme has a major version
change

Replacement of a referenced
child artefact having a
different id or Agency

The parent artefact
version impact
depends on the
backward/ forward
compatibility as shown
in the tables above

Technically, the child artefact is not considered to be related to the
previous child artefact. It needs to be checked whether exchange
contracts can still be guaranteed (backward/forward compatibility
principle)

7

b. Addition or removal of referenced artefacts

CONCEPT SCHEME (CS)

Type of change Impact Comments

Addition or removal of a child
Code List

Minor: N.+

The child Code Lists in a Data Structure Definition have priority over those
referenced in a Concept Scheme. Child Code Lists added to or removed
from a Concept Scheme do not have a direct impact on the data exchange.
Backward/forward compatibility depends on the way Code Lists are
referenced in Data Structure Definitions referencing the concept scheme.
This needs to be taken into account when creating a new version of a DSD
accordingly

DATA STRUCTURE DEFINITION (DSD)

Type of change Impact Comments

Addition or removal of
a child Code List

If same id and Agency, then the child
artefact version change is replicated
in the parent artefact.

If different id or Agency, impact wil
depend on the backward/forward
compatibility as shown in the tables
above

If a child Code List has a minor version change, then the
DSD should also have a minor version change.

If there are several Code List version changes, the most
severe impact is replicated in the DSD. For example, if
two Code Lists have minor changes, and one Code List has
a major change at the same time, the parent DSD has a
major version change

8

6. Appendix - Examples

Example 1 – Change to a Code List name, for clarification purposes. Patch Impact: N.M.+

Id Old Name New Name

CL_ADJUSTMENT Adjustment codes Adjustment code list

Example 2 – Change to a Concept name, for clarification purposes. Patch impact: N.M.+

Id Old name New name

PRODUCT_TO Product classification Product classification (input-output product*product)

Example 3 – Change in the substance of codes. Major impact: +.0

Id Old name New name

CP01115 Other products Pizza and quiche

Example 4 - Aggregation, disaggregation or reorganisation of codes. Major impact: +.0

AGGREGATION OF EXISTING CODES

Old version New version

2011 Heifers (female bovine that never calved), live
2012 Cows, live

2010 Heifers and cows, live

Codes 2011 and 2012 are fully4 removed and replaced with one brand new code. In this case there is a many to 1 correspondence
between the codes.

DISAGGREGATION OF EXISTING CODES

Old version New version

1010 Live horses
1011 Pure bred breeding horses, live
1012 Other horses, live

Code 1010 is fully removed and replaced with two brand new codes. In this case there is a 1 to m correspondence between the
codes.

4 i.e. without integration into or combination with another existing code.

9

REORGANISATION OF EXISTING CODES

Old version New version

3010 Fowls, weighing ≤ 185 g
3020 Ducks, , weighing ≤ 185 g
3030 Other poultry, weighing ≤ 185 g
3040 Fowls, weighing > 185 g
3050 Ducks, , weighing > 185 g
3060 Other poultry, weighing > 185 g

3025 Poultry, weighing ≤ 175 g
3045 Poultry, weighing > 175 g

Codes 3010, 3020, 3030, 3040, 3050 and 3060 are fully removed and replaced with two brand new codes; furthermore the criterion
for the classification used in the old version has been changed in the new version (185 g criterion versus 175 g criterion), so that it is
not possible to exactly aggregate the codes from the old version to the codes of the new version (e.g. a part of 3010 goes to 3025,
another part to 3045). In this case there is a m to n correspondence between the two sets of codes

Example 5 – Changes to hierarchies in a Code List. Major impact: +.0

ADDING A NEW CODE IN AN EXISTING HIERARCHY – CODE LIST

Old version New version

• 0213 - Beer
o 02131 - Lager beer
o 02132 - Other alcoholic beer

• 0213 - Beer
o 02131 - Lager beer
o 02132 - Other alcoholic beer
o 02133 - Low and non-alcoholic beer

Code 02133 has been added to hierarchy 0213

Example 6 – Changes to hierarchies in a Hierarchical Code List. Major impact: +.0

ADDING A NEW CODE IN AN EXISTING HIERARCHY – HIERARCHICA L CODE LIST

Old version New version

• A1 - World (codelist ref. ECB@CL_AREAS@1.0)
o E1 - Europe (ECB@CL_COUNTRIES@1.0)

� ES - Spain
� FR - France
� GR - Greece
� IT - Italy

o E4 - Africa
� etc.

• A1=World (codelist ref. ECB@CL_AREAS@1.0)
o E1 = Europe (ECB@CL_COUNTRIES@1.0)

� ES = Spain
� FR = France
� GR = Greece
� IT = Italy
� DE= Germany

o E4 = Africa
� etc.

The id of the hierarchical codes are assumed to be equal to those of the code lists referenced. The code DE has been
added to hierarchy E1

Example 7.1 – Dependencies between artefacts: Concept Scheme and Code List. Minor impact: N.+

Id:Artefact Type:Details Change type Version Impact
Old

version
New

version

CL_OBS_STATUS:Code List Addition of a new code X Minor: N. + 1.0 1.1

CS_TRADE:Concept Scheme:
References CL_OBS_STATUS
v1.0 above

Adoption of new code X

Change type: Replacement of a
child artefact having a different
version, but the same id and
Agency

Minor: N. +

The child version impact
is replicated in the parent

artefact

2.0 2.1

10

Example 7.2 – Dependencies between artefacts: Concept Scheme and Code List. Major impact: +.0

Id:Artefact Type:Details Change type Version Impact
Old

version
New

version

CL_OBS_STATUS:Code List Removal of code U Major: +.0 1.0 2.0

CS_TRADE:Concept
Scheme:References
CL_OBS_STATUS v1.0 above

Adoption of new
CL_OBS_STATUS without U.

Change type: Replacement of a
child artefact having a different
version, but the same id and
Agency

Major: +.0

The child version impact
is replicated in the parent

artefact.

2.0 3.0

Example 7.3 – Dependencies between artefacts: Concept Scheme and Code List. Variable impact (see below)

Id:Artefact Type:Details Change type Version Impact
Old

version
New

version

CL_XYZ: Code List

a) Maintenance agency changes from
A to B for governance reasons.
Nothing else changes in the code list.

New artefact CL_XYZ
(Agency A)

CL_XYZ
(Agency B)

(new
maintenance

agency)

b) Maintenance agency changes from
A to B and at the same time new
codes are added

c) Maintenance agency changes from
A to B. Since B has different coding
rules, the code list itself changes as
well.

CS_TRADE: Concept
Scheme: References
CL_XYZ (Agency A)

Replacement of a child artefact
having a different Agency.

CL_XYZ (Agency A) changes to
CL_XYZ (Agency B).

Case a): Patch: N.M.+
There is no impact on

data exchange
2.0 2.0.1

Case b): Minor: N. +
The impact is the same as
a new minor version of

the code list

2.0 2.1

Case c) Major: +.0
The impact is the same as
a new major version of

the code list.

2.0 3.0

Example 7.4 – Dependencies between artefacts: Concept Scheme and DSD. Variable impact (see below)

Id:Artefact Type:Details Change type Version Impact Old version New version

CS_TRADE: Concept Scheme
containing Concepts C1, C2, C3

Addition of new Concept
C4 Minor: N. + 1.4 1.5

TRADE: Data Structure Definition:
references Concepts C1 and C2

None
Concept C3 is not used None 1.0 1.0

11

CS_TRADE: Concept Scheme
containing Concepts C1, C2, C3

Change of description in
Concept C3 (typo) Patch: N.M.+ 1.4 1.4.1

TRADE: Data Structure Definition:
references Concepts C1 and C2

None
Concept C3 is not used None 1.0 1.0

CS_TRADE: Concept Scheme
containing Concepts C1, C2, C3

Removal of Concept C3 Major: +.0 1.4 2.0

TRADE: Data Structure Definition:
references Concepts C1 and C2

None
concept C3 is not used None 1.0 1.0

Remark: Once a new version of the DSD is needed for some other reasons (e.g. a change in a code list), it is recommended to update
all concept references to the newest available concept scheme if possible: i.e. DSD version 1.1 would then update its concept scheme
references from 1.4 to 2.0.

CS_TRADE: Concept Scheme
containing Concepts C1, C2, C3

Change of description in
Concept C2 (typo) Patch: N.M.+ 1.4 1.4.1

TRADE: Data Structure Definition:
references Concepts C1 and C2

Correction should be
taken into account,
concept C2 is used

Patch: N.M.+
or

None
1.0

1.0.1
or
1.0

Remark: Since the change of a typo in a Concept of the Concept Scheme does not have a direct impact on the DSD itself (the link is
by reference), there is strictly speaking no need to update the DSD. Both DSDs (1.0 and 1.0.1) will have exactly the same syntax.
However, if maintainers want to highlight the correction for users of the DSD or for some other reason the DSD is updated anyway;
it should reference the newer Concept Scheme.

