1 2	SDMX Technical Working Group
3	VTL Task Force
4	
5	
6	
7	
8	
9	VTL - version 2.0
10	(Validation & Transformation Language)
11	
12	Part 2 - Reference Manual
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	July 2018
25 26	

²⁷ Foreword

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 under the initiative of the SDMX Secretariat, is pleased to present the draft version of VTL 2.0.

30 The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the consideration that SDMX 31 already had a package for transformations and expressions in its information model, while a specific 32 implementation language was missing. To make this framework operational, a standard language for defining 33 validation and transformation rules (operators, their syntax and semantics) had to be adopted, while 34 appropriate SDMX formats for storing and exchanging rules, and web services to retrieve them, had to be designed. The present VTL 2.0 package is only concerned with the first element, i.e., a formal definition of each 35 36 operator, together with a general description of VTL, its core assumptions and the information model it is based 37 on.

- The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM communities and the work started in summer 2013. The intention was to provide a language usable by statisticians to express logical validation rules and transformations on data, described as either dimensional tables or unit-record data. The assumption is that this logical formalization of validation and transformation rules could be converted into specific programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same time, a
- 43 "neutral" business-level expression of the processing taking place, against which various implementations can be
 44 mapped. Experience with existing examples suggests that this goal would be attainable.
- 45 An important point that emerged is that several standards are interested in such a kind of language. However, each standard operates on its model artefacts and produces artefacts within the same model (property of 46 47 closure). To cope with this, VTL has been built upon a very basic information model (VTL IM), taking the 48 common parts of GSIM. SDMX and DDI, mainly using artefacts from GSIM 1.1, somewhat simplified and with 49 some additional detail. In this way, existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL 50 by mapping their information model against the VTL IM. Therefore, although a work-product of SDMX, the VTL language in itself is independent of SDMX and will be usable with other standards as well. Thanks to the 51 possibility of being mapped with the basic part of the IM of other standards, the VTL IM also makes it possible to 52 53 collect and manage the basic definitions of data represented in different standards.
- For the reason described above, the VTL specifications are designed at logical level, independently of any other standard, including SDMX. The VTL specifications, therefore, are self-standing and can be implemented either on their own or by other standards (including SDMX). In particular, the work for the SDMX implementation of VTL is going in parallel with the work for designing this VTL version, and will entail a future update of the SDMX
- 57 is going in parallel with the work for designing this vit version, and will entail a future update of th 58 documentation.
- The first public consultation on VTL (version 1.0) was held in 2014. Many comments were incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for improving the language, received afterwards, fed the discussion for building the draft version 1.1, which contained many new features, was completed in the second half of 2016 and provided for public consultation until the beginning of 2017.
- The high number and wide impact of comments and suggestions induced a high workload on the VTL TF, which 63 64 agreed to proceed in two steps for the publication of the final documentation, taking also into consideration that some first VTL implementation initiatives had already been launched. The first step, the current one, is 65 dedicated to fixing some high-priority features and making them as much stable as possible. A second step, 66 67 scheduled for the next period, is aimed at acknowledging and fixing other features considered of minor impact and priority, which will be added hopefully without affecting neither the features already published in this 68 documentation, nor the possible relevant implementations. Moreover, taking into account the number of very 69 70 important new features that have been introduced in this version in respect to the VTL 1.0, it was agreed that the 71 current VTL version should be considered as a major one and thus named VTL 2.0.
- The VTL 2.0 package contains the general VTL specifications, independently of the possible implementations of
 other standards; in its final release, it will include:
 - a) Part 1 the user manual, highlighting the main characteristics of VTL, its core assumptions and the information model the language is based on;
- b) Part 2 the reference manual, containing the full library of operators ordered by category, including examples; this version will support more validation and compilation needs compared to VTL 1.0.
- c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be used as a test bed for
 all the examples.
- 80 The present document is the part 2.

74

- 81 The latest version of VTL is freely available online at <u>https://sdmx.org/?page_id=5096</u>
- 82

83 Acknowledgements

The VTL specifications have been prepared thanks to the collective input of experts from Bank of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, INEGI-Mexico, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the SDMX Technical Working Group, the SDMX Statistical Working Group and the DDI initiative were consulted and participated in reviewing the

88 documentation.

89 The list of contributors and reviewers includes the following experts: Sami Airo, Foteini Andrikopoulou, David 90 Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, Vincenzo Del Vecchio, Fabio Di Giovanni, Jens

91 Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai,

Bosse, Heinrich Einmann, Bryan Hizpatrick, Fjannig Geiseina, Euca Grainagha, Motan Gregory, György Györnar,
 Edgardo Greising, Dragan Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos, Stefano

Pambianco, Marco Pellegrino, Michele Romanelli, Juan Alberto Sanchez, Roberto Sannino, Angel Simon Delgado,
 Daniel Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and Nikolaos Zisimos.

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX Technical Working Group (twg@sdmx.org).

98 Table of contents

99	Foreword	2
100	Table of contents	4
101	Introduction	8
102	Overwiew of the language and conventions	9
103	Introduction	9
104	Conventions for writing VTL Transformations	
105	Typographical conventions	11
106	Abbreviations for the names of the artefacts	12
107	Conventions for describing the operators' syntax	12
108	Description of the data types of operands and result	
109	VTL-ML Operators	15
110	VTL-ML - Evaluation order of the Operators	27
111	Description of VTL Operators	27
112	VTL-DL - Rulesets	29
113	define datapoint ruleset	29
114	define hierarchical ruleset	
115	VTL-DL – User Defined Operators	
116	define operator	39
117	Data type syntax	40
118	VTL-ML - Typical behaviours of the ML Operators	
119	Typical behaviour of most ML Operators	42
120	Operators applicable on one Scalar Value or Data Set or Data Set Component	42
121	Operators applicable on two Scalar Values or Data Sets or Data Set Components	43
122	Operators applicable on more than two Scalar Values or Data Set Components	45
123	Behaviour of Boolean operators	45
124	Behaviour of Set operators	46
125	Behaviour of Time operators	46
126	Operators changing the data type	47
127	Type Conversion and Formatting Mask	
128	The Numbers Formatting Mask	
129	The Time Formatting Mask	
130	Attribute propagation	51
131	VTL-ML - General purpose operators	
		4

132	Parentheses : ()	
133	Persistent assignment : <	53
134	Non-persistent assignment : :=	55
135	Membership : #	
136	User-defined operator call	57
137	Evaluation of an external routine : eval	58
138	Type conversion : cast	59
139	VTL-ML - Join operators	64
140	Join : inner_join, left_join, full_join, cross_join	
141	VTL-ML - String operators	73
142	String concatenation :	
143	Whitespace removal : trim, rtrim, ltrim	74
144	Character case conversion : upper/lower	
145	Sub-string extraction : substr	
146	String pattern replacement: replace	
147	String pattern location : instr	
148	String length : length	
149	VTL-ML - Numeric operators	
150	Unary plus : +	
151	Unary minus:	
152	Addition : +	
153	Subtraction :	
154	Multiplication : *	
155	Division : /	
156	Modulo : mod	
157	Rounding : round	
158	Truncation : trunc	
159	Ceiling : ceil	
160	Floor: floor	
161	Absolute value : abs	
162	Exponential : exp	
163	Natural logarithm : In	
164	Power : power	
165	Logarithm : log	
166	Square root : sqrt	

167	VTL-ML - Comparison operators	
168	Equal to : =	
169	Not equal to : <>	
170	Greater than : > >=	
171	Less than : < <=	
172	Between : between	
173	Element of: in / not_in	
174	match_characters match_characters	
175	Isnull: isnull	
176	Exists in : exists_in	
177	VTL-ML - Boolean operators	
178	Logical conjunction: and	
179	Logical disjunction : or	
180	Exclusive disjunction : xor	
181	Logical negation : not	
182	VTL-ML - Time operators	
183	Period indicator : period_indicator	
184	Fill time series : fill_time_series	
185	Flow to stock : flow_to_stock	
186	Stock to flow : stock_to_flow	
187	Time shift : timeshift	
188	Time aggregation : time_agg	
189	Actual time : current_date	
190	VTL-ML - Set operators	
191	Union: union	
192	Intersection : intersect	
193	Set difference : setdiff	
194	Simmetric difference : symdiff	
195	VTL-ML - Hierarchical aggregation	
196	Hierarchical roll-up : hierarchy	
197	VTL-ML - Aggregate and Analytic operators	
198	Aggregate invocation	159
199	Analytic invocation	
200	Counting the number of data points: count	
201	Minimum value : min	

202	Maximum value : max	
203	Median value : median	
204	Sum : sum	
205	Average value : avg	
206	Population standard deviation : stddev_pop	
207	Sample standard deviation : stddev_samp	
208	Population variance : var_pop	
209	Sample variance : var_samp	
210	First value : first_value	
211	Last value : last_value	
212	Lag : lag	
213	lead : lead	
214	Rank : rank	
215	Ratio to report : ratio_to_report	
216	VTL-ML - Data validation operators	
217	check_datapoint	
218	check_hierarchy	
219	check	
220	VTL-ML - Conditional operators	
221	if-then-else : if	
222	Nvl : nvl	
223	VTL-ML - Clause operators	
224	Filtering Data Points : filter	
225	Calculation of a Component : calc	
226	Aggregation : aggr	
227	Maintaining Components: keep	
228	Removal of Components: drop	
229	Change of Component name : rename	
230	Pivoting : pivot	
231	Unpivoting : unpivot	
232	Subspace : sub	

234 Introduction

- This document is the Reference Manual of the Validation and Transformation Language (also known as 'VTL')version 2.0.
- 237 The VTL 2.0 library of the Operators is described hereinafter.
- VTL 2.0 consists of two parts: the VTL Definition Language (VTL-DL) and the VTL Manipulation Language (VTL ML).
- 240 This manual describes the operators of VTL 2.0 in detail (both VTL-DL and VTL-ML) and is organized as follows.
- First, in the following Chapter "Overview of the language and conventions", the general principles of VTL are
- summarized, the main conventions used in this manual are presented and the operators of the VTL-DL and VTL ML are listed. For the operators of the VTL-ML, a table that summarizes the "Evaluation Order" (i.e., the
- 244 precedence rules for the evaluation of the VTL-ML operators) is also given.
- 245 The following two Chapters illustrate the operators of VTL-DL, specifically for:
 - the definition of rulesets and their rules, which can be invoked with appropriate VTL-ML operators (e.g. to check the compatibility of Data Point values ...);
- the definition of custom operators/functions of the VTL-ML, meant to enrich the capabilities of the VTL ML standard library of operators.
- The illustration of VTL-ML begins with the explanation of the common behaviour of some classes of relevant VTL-ML operators, towards a good understanding of general language characteristics, which we factor out and do not repeat for each operator, for the sake of compactness.
- 253 The remainder of the document illustrates each single operator of the VTL-ML and is structured in chapters, one
- for each category of Operators (e.g., general purpose, string, numeric ...). For each Operator, there is a specific
- 255 section illustrating the syntax, the semantics and giving some examples.

256

246

257 Overwiew of the language and conventions

258 Introduction

The Validation and Transformation Language is aimed at defining Transformations of the artefacts of the VTL
 Information Model, as more extensively explained in the User Manual.

A Transformation consists of a statement which assigns the outcome of the evaluation of an expression to an Artefact of the IM. The operands of the expression are IM Artefacts as well. A Transformation is made of the following components:

- A left-hand side, which specifies the Artefact which the outcome of the expression is assigned to (this is the result of the Transformation);
- An assignment operator, which specifies also the persistency of the left hand side. The assignment operators are two, the first one for the persistent assignment (<-) and the other one for the non-persistent assignment (:=).
- A right-hand side, which is the expression to be evaluated, whose inputs are the operands of the Transformation. An expression consists in the invocation of VTL Operators in a certain order. When an Operator is invoked, for each input Parameter, an actual argument (operand) is passed to the Operator, which returns an actual argument for the output Parameter. In the right hand side (the expression), the Operators can be nested (the output of an Operator invocation can be input of the invocation of another Operator). All the intermediate results in an expression are non-persistent.
- 275 Examples of Transformations are:
- 276
- 277
- DS_np **:= (**DS_1 DS_2) * 2 ; DS_p <- if DS_np >= 0 then DS_np else DS_1 ;
- 278 279
- (DS_1 and DS_2 are input Data Sets, DS_np is a non persistent result, DS_p is a persistent result, the invoked operators (apart the mentioned assignments) are the subtraction (-) the multiplication (*) the choice (if...then...else), the greater or equal comparison (>=) and the parentheses that control the order of the operators' invocations.
- Like in the example above, Transformations can interact one another through their operands and results; in fact the result of a Transformation can be operand of one or more other Transformations. The interacting Transformations form a graph that is oriented and must be acyclic to ensure the overall consistency, moreover a given Artefact cannot be result of more than one Transformation (the consistency rules are better explained in the User Manual, see VTL Information Model / Generic Model for Transformations / Transformations consistency). In this regard, VTL Transformations have a strict analogy with the formulas defined in the cells of the spreadsheets.
- A set of more interacting Transformations is usually needed to perform a meaningful and self-consistent task like for example the validation of one or more Data Sets. The smaller set of Transformations to be executed in the same run is called Transformation Scheme and can be considered as a VTL program.
- Not necessarily Transformations need to be written in sequence like a classical software program, in fact they are associated to the Artefacts they calculate, like it happens in the spreadsheets (each spreadsheet's formula is associated to the cell it calculates).
- Nothing prevents, however, from writing the Transformations in sequence, taking into account that not necessarily the Transformations are performed in the same order as they are written, because the order of execution depends on their input-output relationships (a Transformation which calculates a result that is operand of other Transformations must be executed first). For example, if the two Transformations of the example above were written in the reverse order:
- 302
- 303 (i) $DS_p <-$ if $DS_np >= 0$ then DS_np else DS_1 ;
- 304 (ii) DS_np := (DS_1 DS_2) * 2 ;
- 305

- All the same the Transformation (ii) would be executed first, because it calculates the Data Set DS_np which is an operand of the Transformation (i).
- 308 When Transformations are written in sequence, a semicolon (;) is used to denote the end of a Transformation 309 and the beginning of the following one.
- 310

321

322

323

327

311 Conventions for writing VTL Transformations

312 When more Transformations are written in a text, the following conventions apply.

313 **Transformations**:

- A Transformation can be written in one or more lines, therefore the end of a line does not denote the end of a Transformation.
- The end of a Tranformation is denoted by a semicolon (;).

317 **Comments**:

•

- 318 Comments can be inserted within VTL Transformations using the following syntaxes.
- A multi-line comment is embedded between /* and */ and, obviously, can span over several lines:
- 320 /* multi-line
 - comment text */
 - A single-line comment follows the symbol // up to the next end of line:
 - // text of a comment on a single line
- A sequence of spaces, tabs, end-of-line characters or comments is considered as a single space.
- The characters *I**, **I*, *II* and the whitespaces can be part of a string literal (within double quotes) but in such a case they are part of the string characters and do not have any special meaning.

328 Examples of valid comments:

329	Example 1:	
330		/* this is a multi-line
331		Comment */
332	Example 2:	
333		// this is single-line comment
334	Example 3:	
335		DS_r <- /* A is a dataset */ A + /* B is a dataset */ B ;
336		(for the VTL this statement is the Transformation $DS_r <-A + B$;)
337	Example 4:	
338		DS_r := DS_1 // my comment
339		* DS_2 ;
340		(for the VTL this statement is the Transformation $DS_r := DS_1 * DS_2$;)
341		

342 Typographical conventions

The Reference Manual (this manual) uses the normal font Cambria for the text and the other following typographical conventions:

Convention	Description	
Italics Cambria	<i>Basic scalar data types (in the text)</i> e.g. "must have one Identifier of type <i>time_period</i> . If the Data Set"	
Bold Arial	Keywords (in the description of the syntax and in the text) e.g. Rule ::={ ruleName : } { when antecedentCondition then } consequentCondition { errorcode errorCode } { errorlevel errorLevel } e.g. "The rename operator allows to rename one or more Components"	
Italics Arial	Optional Parameter (in the description of the syntax) e.g. substr (op, start, length)	
Underlined Arial	Sub-expressions	
Normal font Arial	 The operator's syntax (excluded the keywords, the optional Parameters and the sub-expressions) e.g. length ("Hello, World!") The examples of invocation of the operators e.g. length ("Hello, World!") Optional and Mandatory Parameters (in the text) e.g. "If comp is a Measure in op, then in the result" 	

349 Abbreviations for the names of the artefacts

The names of the artefacts operated by the VTL-ML come from the VTL IM. In their turn, the names of the VTL IM artefacts are derived as much as possible from the names of the GSIM IM artefacts, as explained in the User Manual.

If the complete names are long, the VTL IM suggests also a compact name, which can be used in place of the complete name in case there is no ambiguity (for example, "Set" instead than "Value Domain Subset", "Component" instead than "Data Set Component" and so on); moreover, to make the descriptions more compact, a number of abbreviations, usually composed of the initials (in capital case) or the first letters of the words of artefact names, are adopted in this manual:

358	Complete name	Compact name	Abbreviation
359	Data Set	Data Set	DS
360	Data Point	Data Point	DP
361	Identifier Component	Identifier	Id
362	Measure Component	Measure	Ме
363	Attribute Component	Attribute	At
364	Data Set Component	Component	Сотр
365	Value Domain Subset	Subset or Set	Set
366	Value Domain	Domain	VD

A positive integer suffix (with or without an underscore) can be added in the end to distinguish more than one

instance of the same artefact (e.g., DS_1, DS_2, ..., DS_N, Me1, Me2, ...MeN). The suffix "r" stands for the result of

a Transformation (e.g., DS_r).

370 Conventions for describing the operators' syntax

Each VTL operator has an explanatory name, which recalls the operator function (e.g., "**Greater than**") and a syntactical symbol, which is used to invoke the operator (e.g., "**>**"). The operator symbol may also be alphabetic, always lowercase (e.g., **round**).

In the VTL-DL, the operator symbol is the keyword **define** followed by the name of the object to be defined. The complete operator symbol is therefore a compound lowercase sentence (e.g. **define operator**).

In the VTL-ML, the operator symbol does not contain spaces and may be either a sequence of special characters (like +, -, >=, <= and so on) or a text keyword (e.g., **and**, **or**, **not**). The keyword may be compound with underscores as separators (e.g., **exists_in**).

Each operator has a syntax, which is a set of formal rules to invoke the operator correctly. In this document, the
syntax of the operators is formally described by means of a meta-syntax which is not part of the VTL language,
but has only presentation purposes.

The meta-syntax describes the syntax of the operators by means of *meta-expressions*, which define how the invocations of the operators must be written. The meta-expressions contain the symbol of the operator (e.g., **"join**"), the possible other keywords to denote special parameters (e.g., **using**), other symbols to be used (e.g., parentheses, commas), the named formal parameters (e.g., multiplicand and multiplier for the multiplication).

As for the typographic stile, in order to distinguish between the syntax symbols (which are used in the operator invocations) and meta-syntax symbols (used just for explanatory purposes, and not actually used in invocations), the syntax symbols are in **boldface** (i.e., the operator symbol, the special keywords, the possible parenthesis, commas an so on). The names of the generic operands (e.g., multiplicand, multiplier) are in Roman type, even if they are part of the syntax.

391 The meta-expression can be very simple, for example the meta-expression for the addition is:

op1 + op2

392

This means that the addition has two operands (op1, op2) and is invoked by specifying the name of the first addendum (op1), then the addition symbol (+) followed by the name of the second addendum (op2).

In this example, all the three parts of the meta-expression are fixed. In other cases, the meta-expression can be more complex and made of optional, alternative or repeated parts.

397 In the simple cases, the optional parts are denoted by using the *italic* face, for example:

398	substr (op, start, length)			
399 400 401	The expression above implies that in the substr operator the start and length operands are optional. In the invocation, a non-specified optional operand is substituted by an underscore or, if it is in the end of the invocation, can be omitted. Hence the following syntaxes are all formally correct:			
402	substr (op, start, length)			
403	substr (op, start)			
404	<pre>substr (op, _ , length)</pre>			
405	substr (op)			
406 407 408 409	In more complex cases, a regular expression style is used to denote the parts (sub-expressions) of the meta- expression that are optional, alternative or repeated. In particular, braces denote a sub-expression; a vertical bar (or sometimes named "pipe") within braces denotes possible alternatives; an optional trailing number, following the braces, specifies the number of possible repetitions.			
410	 non-optional : non-optional sub-expression (text without braces) 			
411	• {optional} : optional sub-expression (zero or 1 occurrence)			
412	 {non-optional}¹ : non-optional sub-expression (just 1 occurrence) 			
413	• {one-or-more}+ : sub-expression repeatable from 1 to many occurrences			
414	• {zero-or-more}* : sub-expression repeatable from 0 to many occurrences			
415	• { part1 part2 part3 } : optional alternative sub-expressions (zero or 1 occurrence)			
416	• { part1 part2 part3 } ¹ : alternative sub-expressions (just 1 occurrence)			
417	• { part1 part2 part3 }+ : alternative sub-expressions, from 1 to many occurrences			
418	• { part1 part2 part3 }* : alternative sub-expressions, from 0 to many occurrences			
419 420	Moreover, to improve the readability, some sub-expressions (the underlined ones) can be referenced by their names and separately defined, for example a meta-expression can take the following form:			
421	sub-expr ₁ -text <u>sub-expr₂-name</u> <u>sub-expr_{N-1}-name</u> sub-expr _N -text			
422	<u>sub-expr₂-name</u> ::= sub-expr ₂ -text			
423	possible others			
424	<u>sub-expr_{N-1}-name</u> ::= sub-expr _{N-1} -text			
425	In this representation of a meta-expression:			
426	• The first line is the text of the meta-expression			
427	• sub-expr ₁ -text, sub-expr _N -text are sub-expressions directly written in the meta-expression			
428	 <u>sub-expr2-name</u>, <u>sub-exprN-1-name</u> are identifiers of sub-expressions. 			
429	 sub-expr₂-text, sub-expr_{N-1}-text are subexpression written separately from the meta-expression. 			
430	• The symbol ::= means "is defined as" and denotes the assignment of a sub-expression-text to a sub-			
431	expression-name.			
432 433	The following example shows the definition of the syntax of the operators for removing the leading and/or the trailing whitespaces from a string:			
434	Meta-expression ::= { trim Itrim rtrim } ¹ (op)			
435	The meta-expression above synthesizes that:			
436	• trim, ltrim, rtrim are the operators' symbols (reserved keywords);			
437	• (,) are symbols of the operators syntax (reserved keywords);			
438	• op is the only operand of the three operators;			
439 440 441	• "{ } ¹ " and " " are symbols of the meta-syntax; in particular " " indicates that the three operators are alternative (a single invocation can contain only one of them) and "{ } ¹ " indicates that a single invocation contains just one of the shown alternatives;			
442	From this template, it is possible to infer some valid possible invocations of the operators:			
443	ltrim (DS_2)			
444	rtrim (DS_3)			
445 446	In these invocations, ltrim and rtrim are the symbols of the invoked operator and DS_2 and DS_3 are the names of the specific Data Sets which are operands respectively of the former and the latter invocation.			
447				

⁴⁴⁸ Description of the data types of operands and result

449 450 451 This section cointains a brief legenda of the meaning of the symbols used for describing the possible types of operands and results of the VTL operators. For a complete description of the VTL data types, see the chapter "VLT Data Types" in the User Manual.

Symbol	Meaning	Example	Example meaning		
parameter :: type2	parameter is of the <i>type2</i>	param1 :: string	param1 is of type <i>string</i>		
type1 type2	alternative types	dataset component scalar	either datset or component or scalar		
type1 <type2></type2>	scalar <i>type2</i> restricts <i>type1</i>	measure <string></string>	Measure of <i>string</i> type		
type1 _ (underscore)	<i>type1</i> can appear just once	measure <string> _</string>	just one string Measure		
type1 elementName	predetermined element of <i>type1</i>	measure <string> my_text</string>	just one string Measure named "my_text"		
type1 _ +	<i>type1</i> can appear one or more times	measure <string>_+</string>	one or more string Measures		
type1_*	<i>type1</i> can appear zero, one or more times	measure <string>_*</string>	zero, one or more string Measures		
dataset { type_constraint }	<i>Type_constraint</i> restricts the <i>dataset</i> type	dataset { measure < string > _+ }	Dataset having one or more string Measures		
t ₁ * t ₂ * * t _n	Product of the types t_1, t_2, \ldots, t_n	string * integer * boolean	triple of scalar values made of a string, an integer and a boolean value		
t1 -> t2	Operator from t1 to t2	string -> number	Operator having input string and output number		
ruleset { type_constraint }			hierarchical ruleset defined on geo_area		
set < t >	Set of elements of type "t"	set < dataset >	set of datasets		

452

453 Moreover, the word "name" in the data type description denotes the fact that the argument of the invocation can 454 contain only the name of an artefact of such a type but not a sub-expression. For example:

455 comp :: name < component < string > >

456 Means that the argument passed for the input parameter comp can be only the name of a Component of the 457 basic scalar type *string*. The argument passed for comp cannot be a component expression.

The word "name" added as a suffix to the parameter name means the same (for example if the parameter above is called comp_name).

460 VTL-ML Operators

Name	Symbol	Syntax	Description	Notati on	Input parameters type	Result type	Behaviour
Parentheses	()	(op)	Override the default evaluation order of the operators	Func.	op :: dataset component scalar	dataset component scalar	Specific
Persistent assignment	<-	re <- op	Assigns an Expression to a persistent model artefact	Infix	re :: name op :: dataset	empty	Specific
Non persistent assignment	:=	re := op	Assigns an Expression to a non persistent model artefact	Infix	re :: name op :: dataset scalar	empty	Specific
Membership	#	ds#comp	Identifies a Component within a Data Set	Infix	ds :: dataset comp :: name <component></component>	dataset	Specific
User defined operator call		operator_name ({argument {,argument}*})	Invokes a user defined operator passing the arguments	Func.	operatorName :: name argument :: user-defined operator parameters data type	user-defined result data type	Specific
Evaluation of an external routine	eval	eval (externalRoutineName ({argument} {, argument }*) , language, returns outputType)	Evaluates an external routine	Func.	externalRoutineName :: string argument :: any expression language :: string outputType :: outputParameterType	dataset	Specific

Type conversion	cast	cast (op ,scalarType { , mask })	converts to the specified data type	Func.	op :: dataset{ measure <scalar> _ } component<scalar> scalar scalarType :: scalar type mask :: string</scalar></scalar>	dataset{ measure <scalar> _ } component<scalar> scalar</scalar></scalar>	Changing data type
Join	inner_joi n, left_join, full_join, cross_joi n,	<pre>joinOperator { ds { as alias } {, ds { as alias }}* { using usingComp } { filter filterCondition } { apply applyExpr calc calcClause aggr aggrClause { groupingClause } } { keep comp {, comp }* drop comp {, comp }* drop comp {, comp }* } { rename compFrom to compTo {, compFrom to compTo }* } } joinOperator::= { inner_join left_join full_join cross_join }^1 calcClause ::= { calcRole } calcComp := calcExpr {, { calcRole } calcComp := calcExpr {, { calcRole } calcComp := aggrExpr } {, { aggrRole } aggrComp := aggrExpr }* aggrClause ::= { measure attribute viral attribute }^1 aggrClause ::= { group by idList group all conversionExpr }^1 { having havingCondition } </pre>	Inner join, left outer join, full outer join, cross join,	Func.	ds :: dataset alias :: name usingId :: name < component > filterCondition :: component <boolean> applyExpr :: dataset calcComp:: name<component> calcExpr :: component<scalar> aggrComp :: name<component> aggrExpr :: component<scalar> groupingId :: name < identifier > conversionExpr :: component<scalar> havingCondition :: component<boolean> comp :: name < component > comp :: name < component > compFrom :: component<scalar></scalar></boolean></scalar></scalar></component></scalar></component></boolean>	dataset	Specific
String concatenation	II	op1 op2	Concatenates two strings	Infix	op1, op2 :: dataset { measure <string> _+} component<string> string</string></string>	dataset { measure <string> _+ } component<string> string</string></string>	On two scalars, DSs or DSCs

Whitespace removal	trim rtrim ltrim	{ trim ltrim rtrim } ¹ (op)	Removes trailing or/and leading whitespace from a string	Func.	op :: dataset { measure <string> _+ } component<string> string</string></string>	dataset { measure <string> _+ } component<string> string</string></string>	On one scalar, DS or DSC
Character case conversion	upper lower	{ upper lower } ¹ (op)	Converts the character case of a string in upper or lower case	Func.	op :: dataset { measure <string> _+ } component<string> string</string></string>	dataset { measure <string> _+ } component<string> string</string></string>	On one scalar, DS or DSC
Sub-string extraction	substr	substr (op, start, length)	Extracts the substring that starts in a specified position and has a specified lengtt	Func.	<pre>op :: dataset { measure<string> _+ } component<string> string start :: component < integer[>=1]> integer[>= 1] length :: component < integer[>= 0] > integer[>=0]</string></string></pre>	dataset { measure <string> _+ } component<string> string</string></string>	On one DS or on more than two scalars or DSC
String pattern replacement	replace	replace (op, pattern1, pattern2)	Replaces a specified string-pattern with another one	Func.	op :: dataset { measure <string> _+ } component<string> string pattern1, pattern2 :: component<string> string</string></string></string>	dataset { measure <string> _+ } component<string> string</string></string>	On one DS or on more than two scalars or DSC

String pattern location	instr	instr(op, pattern, <i>start, occurrence</i>)	Returns the location of a specified string-pattern	Func.	<pre>op :: dataset { measure<string>_+ } component<string> string pattern :: component<string> string start:: component< integer[>= 1]> integer[>= 1] occurrence :: component < integer[>= 1]> integer[>= 1]</string></string></string></pre>	<pre>dataset {measure<integer[>=0]> int_var } component <integer[>= 0]> integer[>= 0]</integer[></integer[></pre>	Changing data type
String length	length	length (op)	Returns the length of a string	Func.	op :: dataset { measure <string> _ } component<string> string</string></string>	dataset {measure <integer[>=0]> int_var } component <integer[>=0]> integer[>=0]</integer[></integer[>	Changing data type
Unary plus	+	+ op	Replicates the operand with the sign unaltered	Infix	op :: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On one scalar, DS or DSC
Unary minus	-	- op	Replicates the operand with the sign changed	Infix	op :: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On one scalar, DS or DSC
Addition	+	op1 + op2	Sums two numbers	Infix	op1, op2:: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On two scalars, DSs or DSCs
Subtraction	-	op1 - op2	Subtracts two numbers	Infix	op1, op2:: dataset { measure <number> _+ } component<number> number</number></number>	<pre>dataset { measure<number> _+ } component<number> number</number></number></pre>	On two scalars, DSs or DSCs
Multiplication	*	op1 * op2	Multiplies two numbers	Infix	op1, op2:: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On two scalars, DSs or DSCs
Division	/	op1 / op2	Divides two numbers	Infix	op1, op2:: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On two scalars, DSs or DSCs

Modulo	mod	mod (op1, op2)	Calculates the remainder of a number divided by a certain divisor	Func.	op1, op2:: dataset { measure <number> _+ } component<number> number</number></number>	dataset {measure <number> _+ } component<number> number</number></number>	On two scalar, DS or DSC
Rounding	round	round (op, numDigit)	Rounds a number to a certain digit	Func.	op :: dataset { measure <number> _+ } component<number> number numDigit:: component < integer > integer</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On one DS or on two scalars or DSC
Truncation	trunc	trunc (op, <i>numDigit</i>)	Truncates a number to a certain digit	Func.	op :: dataset { measure <number> _+ } component<number> number numDigit :: component < integer > integer</number></number>	dataset { measure <number> _+ } component<number> number</number></number>	On one DS or on two scalars or DSC
Ceiling	ceil	ceil (op)	Returns the smallest integer which is greater or equal than a number	Func.	op :: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <integer> _+ } component< integer > integer</integer>	On one scalar, DS or DSC
Floor	floor	floor (op)	Returns the greater integer which is smaller or equal than a number	Func.	op :: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <integer> _+ } component< integer > integer</integer>	On one scalar, DS or DSC
Absolute value	abs	abs (op)	Calculates the absolute value of a number	Func.	op :: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number[>=0]>_+ } component<number[>=0]> number[>= 0]</number[></number[>	On one scalar, DS or DSC
Exponential	exp	exp (op)	Raises e (base of the natural logarithm) to a number	Func.	op:: dataset { measure <number> _+ } component<number> number</number></number>	dataset { measure <number[>0]> _+ } component<number[>0]> number[>0]</number[></number[>	On one scalar, DS or DSC

						1	
Natural logarithm	ln	In (op)	Calculates the natural logarithm of a number	Func.	op :: dataset {measure <number[>0]> _+ } component<number[>0]> number[>0]</number[></number[>	<pre>dataset { measure<number> _+ } component<number> number</number></number></pre>	On one scalar, DS or DSC
Power	power	power (base, exponent)	Raises a number to a certain exponent	Func.	<pre>base :: dataset { measure<number>_+ } component<number> number exponent :: component<number> number</number></number></number></pre>	dataset { measure <number> _+ } component<number> number</number></number>	On one DS or on two scalars or DSC
Logarithm	log	log (op, num)	Calculates the logarithm of a number to a certain base	Func.	<pre>op :: dataset { measure<number[>1]>_+ } component<number[>1]> number[>1] num:: component<integer[>0]> integer[>0]</integer[></number[></number[></pre>	dataset { measure <number> _+ } component<number> number</number></number>	On one DS or on two scalars or DSC
Square root	sqrt	sqrt (op)	Calculates the square root of a number	Func.	op :: dataset { measure <number[>=0>_+ } component<number[>= 0]> number[>= 0]</number[></number[>	dataset { measure <number[>=0]> _+ } component<number[>= 0]> number[>= 0]</number[></number[>	On one scalar, DS or DSC
Equal to	=	left = right	Verifies if two values are equal	Infix	left,right :: dataset {measure <scalar>_} component<scalar> scalar</scalar></scalar>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type
Not equal to	<>	left <> right	Verifies if two values are not equal	Infix	left, right :: dataset {measure <scalar>_} component<scalar> scalar</scalar></scalar>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type
Greater than	>	left { > >= } ¹ right	Verifies if a first value is greater (or equal) than a second value	Infix	left, right :: dataset {measure <scalar> _ } component<scalar> scalar</scalar></scalar>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type
Less than	< <=	left { < <= }1 right	Verifies if a first value is less (or equal) than a second value	Infix	left, right :: dataset {measure <scalar>_} component<scalar> scalar</scalar></scalar>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type

Between	between	between(op, from, to)	Verify if a value belongs to a range of values	Func.	op :: dataset {measure <scalar>_} component<scalar> scalar from ::scalar component<scalar> to :: scalar component<scalar></scalar></scalar></scalar></scalar>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type
Element of	in	op in <u>collection</u> collection ::= set valueDomainName	Verifies if a value belongs to a set of values	Infix	op :: dataset {measure <scalar>_} component<scalar> scalar collection :: set<scalar> name<value_domain></value_domain></scalar></scalar></scalar>	dataset {measure <boolean> bool_var}</boolean>	Changing
Element of	not_in	op not_in <u>collection</u> <u>collection</u> ::= set valueDomainName	Verifies if a value does not belong to a set of values	Infix		component <boolean> boolean</boolean>	data type
Match_charact ers	match_c haracter s	match_characters (op, pattern)	Verifies if a value respects or not a pattern	Func.	op:: dataset {measure <string>_} component<string> string pattern :: string component<string></string></string></string>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type
Isnull	isnull	isnull (op)	Verifies if a values is NULL	Func.	op :: dataset {measure <scalar>_} component<scalar> scalar</scalar></scalar>	dataset {measure <boolean> bool_var} component<boolean> boolean</boolean></boolean>	Changing data type
Exists in	exists_in	exists_in (op1, op2, <u>retain</u>) <u>retain</u> ::= { true false all }	As for the common identifiers of op1 and op2, verifies if the combinations of values of op1 exist in op2.	Func.	op1, op2 :: dataset	dataset {measure <boolean> bool_var}</boolean>	Changing data type
Logical conjunction	and	op1 and op2	Calculates the logical AND		op1,op2 :: dataset {measure <boolean>_} component<boolean> boolean</boolean></boolean>	dataset { measure <boolean> _} component<boolean> boolean</boolean></boolean>	Boolean
Logical disjunction	or	op1 or op2	Calculates the logical OR		op1,op2 :: dataset {measure <boolean> _ } component<boolean> boolean</boolean></boolean>	dataset { measure <boolean> _} component<boolean> boolean</boolean></boolean>	Boolean

Exclusive disjunction	xor	op1 xor op2	Calculates the logical XOR		op1,op2 :: dataset {measure <boolean>_} component<boolean> boolean</boolean></boolean>	dataset { measure <boolean> _} component<boolean> boolean</boolean></boolean>	Boolean
Logical negation	not	not op	Calculates the logical NOT		op :: dataset {measure <boolean> _ } component<boolean> boolean</boolean></boolean>	dataset { measure <boolean> _ } component<boolean> boolean</boolean></boolean>	Boolean
Period indicator	period_i ndicator	period_indicator ({op})	extracts the period indicator from a time_period value	Func.	op :: dataset { identifier <time_period> _ , identifier _* } component<time_period> time_period</time_period></time_period>	dataset { measure <duration> duration_var } component <duration> duration</duration></duration>	Specific
Fill time series	fill_time_ series	fill_time_series (op { , <u>limitsMethod</u> }) <u>limitsMethod</u> ::= single all	Replaces each missing data point in the input Data Set	Func.	op :: dataset { identifier <time> _ , identifier _* }</time>	dataset { identifier <time> _ , identifier _* }</time>	Specific
Flow to stock	flow_to_s tock	flow_to_stock (op)	Transforms from a flow interpretatio n of a Data Set to stock	Func.	op :: dataset { identifier <time>_, identifier _* , measure<number> _+ }</number></time>	dataset { identifier < time > _ , identifier _* , measure <number> _+ }</number>	Specific
Stock to flow	stock_to_ flow	stock_to_flow (op)	Transforms from stock to flow interpretatio n of a Data Set	Func.	op :: dataset { identifier <time> _, identifier _* , measure<number> _+ }</number></time>	<pre>dataset { identifier < time > _ , identifier _* , measure<number> _+ }</number></pre>	Specific
Time shift	timeshift	timeshift (op , shiftNumber)	Shifts the time component of a specified range of time	Func.	op :: dataset { identifier <time> _ , identifier _* } shiftNumber :: integer</time>	dataset { identifier < time > _ , identifier _* }	Specific
Time aggregation	time_agg	<pre>time_agg (periodIndTo { , periodIndFrom } { ,op }{ , first last })</pre>	converts the time values from higher to lower frequency values	Func.	op :: dataset { identifier <time> _ , identifier _* } component<time> time periodIndFrom :: duration periodIndTo :: duration</time></time>	dataset { identifier < time > _ , identifier _* } component <time> time</time>	Specific

Actual time	current_ date	current_date ()	returns the current date	Func.		date	Specific
Union	union	union (<u>dsList</u>) <u>dsList</u> ::= ds { , ds }*	Computes the union of N datasets	Func.	ds :: dataset	dataset	Set
Intersection	intersect	intersect (<u>dsList</u>) <u>dsList</u> ::= ds { , ds }*	Computes the intersection of N datasets	Func.	ds :: dataset	dataset	Set
Set difference	setdiff	setdiff (ds1, ds2)	Computes the differences of two datasets	Func.	ds1, ds2 :: dataset	dataset	Set
Simmetric difference	symdiff	symdiff (ds1, ds2)	Computes the symmetric difference of two datasets	Func.	ds1, ds2 :: dataset	dataset	Set
Hierarchical roll-up	hierarch y	<pre>hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp } { mode } { input } { output }) condComp ::= component { , component }* mode ::= non_null non_zero partial_null partial_zero always_null always_zero input ::= dataset rule rule_priority output ::= computed all</pre>	Aggregates data using a hierarchical ruleset	Func.	op ::dataset{measure <number> _ } hr ::name < hierarchical > condComp :: name < component > ruleComp :: name < identifier ></number>	dataset{measure <number>_}</number>	Specific
Aggregate invocation		<pre>in a Data Set expression: aggregateOperator (firstOperand {, additionalOperand }* { groupingClause }) in a Component expression within an aggr clause aggregateOperator (firstOperand {, additionalOperand }*) { groupingClause } aggregateOperator ::= avg count max median min stddev_pop stddev_samp sum var_pop var_samp groupingClause ::= { group by groupingId {, groupingId}* group except groupingId {, groupingId}* group all conversionExpr }1 { having havingCondition }</pre>	Set of statistical functions used to aggregate data	Func.	firstOperand :: dataset component additionalOperand :: type of the (possible) additional parameter of the aggregate Operator groupingId ::name < identifier > conversionExpr :: identifier havingCondition :: component <boolean></boolean>	dataset component	Specific

Analytic invocation		analyticOperator (firstOperand {, additionalOperand }* over (<u>analyticClause</u>)) analyticOperator ::= avg count max median min stddev_pop stddev_samp sum var_pop var_samp first_value lag last_value lead rank ratio_to_report analyticClause ::= { partitionClause } { orderClause } { windowClause } partitionClause ::= partition by identifier {, identifier }* orderClause ::= order by component { asc desc } {, component { asc desc }}* windowClause ::= { data points range } ¹ between limitClause and limitClause limitClause ::= { num preceding num following current data point unbounded preceding unbounded following } ¹	Set of statistical functions used to aggregate data	Func.	firstOperand :: dataset component additionalOperand :: type of the (possible) additional parameter of the invoked operator identifier :: name <identifier> component :: name<component> num :: integer</component></identifier>	dataset component	Specific
Check datapoint	check_da tapoint	<pre>check_datapoint (op , dpr { components listComp } { output output }) listComp ::= comp { , comp }* output ::= invalid all all_measures</pre>	Applies one datapoint ruleset on a Data Set	Func.	op ::dataset dpr ::name < datapoint > comp :: name < component >	dataset	Specific
Check hierarchy	check_hi erarchy	<pre>check_hierarchy (op , hr { condition condComp {, condComp }* } { rule ruleComp } { input } { output }) mode ::= non_null non_zero partial_null partial_zero always_null always_zero input ::= dataset dataset_priority output ::= invalid all all_measures</pre>	Applies a hierarchical ruleset to a Data Set	Func.	op ::dataset hr ::name < hierarchical > condComp :: name< component > ruleComp :: name< identifier >	dataset	Specific
Check	check	<pre>check (op { errorcode errorcode } { errorlevel errorlevel } { imbalance imbalance } { output }) output ::= invalid all</pre>	Checks if an expression verifies a condition	Func.	op :: dataset errorcode :: errorcode_vd errorlevel :: errorlevel_vd imbalance :: number	dataset	Specific

If then else	ifthen else	if condition then thenOperand else elseOperand	Makes alternative calculations according to a condition	Func.	condition :: dataset { measure <boolean> _ } component<boolean> boolean thenOperand :: dataset component scalar elseOperand :: dataset component scalar</boolean></boolean>	dataset component scalar	Specific
Nvl	nvl	nvl (op1, op2)	Replaces the null value with a value.	Func.	op1, op2:: dataset component scalar	dataset component scalar	Specific
Filtering Data Points	filter	op [filter condition]	Filter data using a Boolean condition	Clause	op :: dataset filterCondition :: component <boolean></boolean>	dataset	Specific
Calculation of a Component	calc	op [calc { <u>calcRole</u> } calcComp := calcExpr { , { <u>calcRole</u> } calcComp := calcExpr }*]	Calculates the values of a Structure Component	Clause	op :: dataset calcComp ::name < component > calcExpr :: component <scalar></scalar>	dataset	Specific
Aggregation	aggr	op [aggr aggrClause { groupingClause }] aggrClause ::= { aggrRole } aggrComp := aggrExpr {, { aggrRole } aggrComp:= aggrExpr }* groupingClause ::= { group by groupingId {, gropuingId }* group except groupingId {, groupingId }* group all conversionExpr } ¹ { having havingCondition } aggrRole::= measure attribute viral attribute	Aggregates using an aggregate operator	Clause	op :: dataset aggrComp :: name < component > aggrExpr :: component <scalar> groupingId ::name <identifier> conversionExpr :: identifier<scalar> havingCondition :: component<boolean></boolean></scalar></identifier></scalar>	dataset	Specific
Maintaining Components	keep	op [keep comp {, comp }*]	Keep list of components	Clause	op ::dataset comp :: name < component >	dataset	Specific
Removal of Components	drop	op [drop comp { , comp }*]	Drop list of components	Clause	op :: dataset comp :: name < component >	dataset	Specific

Change of Component name	rename	op [rename comp_from to comp_to { ,comp_from to comp_to }*]	Rename components	Clause	op :: dataset comp_from :: name <component> comp_to :: name<component></component></component>	dataset	Specific
Pivoting	pivot	op [pivot identifier , measure]	Transform identifier values to measures	Clause	op :: dataset identifier ::name <identifier> measure ::name <measure></measure></identifier>	dataset	Specific
Unpivoting	unpivot	op [unpivot identifier , measure]	Transform measures to identifier values	Clause	op :: dataset identifier :: name <identifier> measure :: name<measure></measure></identifier>	dataset	Specific
Subspace	sub	op [sub identifier = value { , identifier = value }*]	Remove the specified identifiers by fixing a value for them	Clause	op :: dataset identifier :: name <identifier> value :: scalar</identifier>	dataset	Specific

464 VTL-ML - Evaluation order of the Operators

Within a single expression of the manipulation language, the operators are applied in sequence, according to the precedence order. Operators with the same precedence level are applied according to the default associativity rule. Precedence and associativity orders are reported in the following table.

468

Evaluation order	Operator	Description	Default associativity rule
I	()	Parentheses. To alter the default order.	None
II	VTL operators with functional syntax	VTL operators with functional syntax	Left-to-right
III	Clause Membership	Clause Membership	Left-to-right
IV	unary plus unary minus not	Unary minus Unary plus Logical negation	None
V	* /	Multiplication Division	Left-to-right
VI	+ - 	Addition Subtraction String concatenation	Left-to-right
VII	>>= < <= = <> in not_in	Greater than Less than Equal-to Not-equal-to In a value list Not in a value list	Left-to-right
VIII	and	Logical AND	Left-to-right
IX	or xor	Logical OR Logical XOR	Left-to-right
Х	if-then-else	Conditional (if-then-else)	None

469

470 Description of VTL Operators

- The structure used for the description of the VTL-DL Operators is made of the following parts:
- **Operator name**, which is also used to invoke the operator
- **Semantics:** a brief description of the purpose of the operator
- **Syntax:** the syntax of the Operator (this part follows the conventions described in the previous section "Conventions for describing the operators' syntax")
- **Syntax description**: detailed explanation of the meaning of the various parts of the syntax
- **Parameters:** list of the input parameters and their types

- **Constraints**: additional constraints that are not specified with the meta-syntax and need a textual explanation
- Semantic specifications: detailed description of the semantics of the opoerator
- 482 **Examples**: examples of invocation of the operator
- 483

484 The structure used for the description of the VTL-ML Operators is made of the following parts:

- **Operator name**, followed by the **operator symbol** (keyword) which is used to invoke the operator
- Syntax: the syntax of the Operator (this part follows the conventions described in the previous section
 "Conventions for describing the operators' syntax")
- **Input parameters:** list of all input parameters and the subexpressions with their meaning and the indication if they are mandatory or optional
- **Examples of valid syntaxes:** examples of syntactically valid invocations of the Operator
- 491 Semantics for scalar operations: the behaviour of the Operator on scalar operands, which is the basic
 492 behaviour of the Operator
- **Input parameters type**: the formal description of the type of the input parameters (this part follows the conventions described in the previous section "Description of the data types of operands and results")
- **Result type:** the formal description of the type of the result (this part follows the conventions described in the previous section "Description of the data types of operands and results")
- Additional constraints: additional constraints that are not specified with the meta-syntax and need a textual explanation, including both possible semantic constraints under which the operation is possible or impossible, and syntactical constraint for the invocation of the Operator
- Behaviour: description of the behaviour of the Operator for non-scalar operations (for example operations at Data Set or at Component level). When the Operator belongs to a class of Operators having a common behaviour, the common behavior is described once for all in a section of the chapter "Typical behaviours of the ML Operators" and therefore this part describes only the specific aspect of the behaviour and contains a reference to the section where the common part of the behaviour is described.
- **Examples**: a series of examples of invocation and application of the operator in case of operations at Data Sets or at Component level.
- 507

508 VTL-DL - Rulesets

509 define datapoint ruleset

510 Semantics

The Data Point Ruleset contains Rules to be applied to each individual Data Point of a Data Set for validation purposes. These rulesets are also called "horizontal" taking into account the tabular representation of a Data Set (considered as a mathematical function), in which each (vertical) column represents a variable and each (horizontal) row represents a Data Point: these rulesets are applied on individual Data Points (rows), i.e., horizontally on the tabular representation.

517 *Syntax* 518

518 519 520 521 522 523	define datapoint rule <u>dpRule</u> { ; <u>dpRule</u> }* end datapoint rulese	eset rulesetName(<u>dpRulesetSignature</u>)is et
524	<u>dpRulesetSignatur</u>	e ::= valuedomain listValueDomains variable listVariables
525	listValueDomains	<pre>valueDomain { as vdAlias } { , valueDomain { as vdAlias } }*</pre>
526	listVariables ::=	<pre>variable { as varAlias } { , variable { as varAlias } }*</pre>
527 528 529 530	<u>dpRule</u> ::=	{ ruleName : } { when antecedentCondition then } consequentCondition { errorcode errorCode } { errorlevel errorLevel }
531	Syntax description	
532 533 534 535 536 537 538	rulesetName <u>dpRulesetSignature</u>	the name of the Data Point Ruleset to be defined. the Cartesian space of the Ruleset (signature of the Ruleset), which specifies either the Value Domains or the Represented Variables (see the information model) on which the Ruleset is defined. If valuedomain is specified then the Ruleset is applicable to the Data Sets having Components that take values on the specified Value Domains. If variable is specified then the Ruleset is applicable to Data Sets having the specified Variables as Components.
539 540 541 542	valueDomain vdAlias	a Value Domain on which the Ruleset is defined. an (optional) alias assigned to a Value Domain and valid only within the Ruleset, this can be used for the sake of compactness in writing the Rules. If an alias is not specified then the name of the Value Domain (parameter valueDomain) is used in the body of the rules.
543 544 545 546	variable varAlias	a Represented Variable on which the Ruleset is defined. an (optional) alias assigned to a Variable and valid only within the Ruleset, this can be used for the sake of compactness in writing the Rules. If an alias is not specified then the name of the Variable (parameter valueDomain) is used in the body of the Rules.
547 548 549 550 551 552 553 554	<u>dpRule</u> ruleName	a Data Point Rule, as defined in the following parameters. the name assigned to the specific Rule within the Ruleset. If the Ruleset is used for validation then the ruleName identifies the validation results of the various Rules of the Ruleset. The ruleName is optional and, if not specified, is assumed to be the progressive order number of the Rule in the Ruleset. However please note that, if ruleName is omitted, then the Rule names can change in case the Ruleset is modified, e.g., if new Rules are added or existing Rules are deleted, and therefore the users that interpret the validation results must be aware of these changes.
555 556 557 558	antecedentCondition	8
559 560	consequentCondition	a <i>boolean</i> expression to be evaluated for each single Data Point of the input Data Set when the antecedentCondition evaluates to TRUE (as mentioned, missing antecedent

561 562 563		conditions are assumed to be TRUE). It contains Values of the Value Domains or Variables specified in the Ruleset signature and constants; all the VTL-ML component level operators are allowed. A consequent condition equal to FALSE is considered as a non-
564		valid result.
565	errorCode	a literal denoting the error code associated to the rule, to be assigned to the possible non-
566	chorococ	valid results in case the Rule is used for validation. If omitted then no error code is
567		assigned (NULL value). VTL assumes that a Value Domain errorcode_vd of error codes
568		exists in the Information Model and contains all possible error codes: the errorCode
569		literal must be one of the possible Values of such a Value Domain. VTL assumes also that a
570		Variable errorcode for describing the error codes exists in the IM and is a dependent
571		variable of the Data Sets which contain the results of the validation.
	errorLevel	
572	enorLever	a literal denoting the error level (severity) associated to the rule, to be assigned to the
573		possible non-valid results in case the Rule is used for validation. If omitted then no error
574		level is assigned (NULL value). VTL assumes that a Value Domain errorlevel_vd of error
575		levels exists in the Information Model and contains all possible error levels: the
576		errorLevel literal must be one of the possible Values of such a Value Domain. VTL
577		assumes also that a Variable errorlevel for describing the error levels exists in the IM and
578		is a dependent variable of the Data Sets which contain the results of the validation.
579		•

580 Parameters

581	rulesetName ::	name <ruleset></ruleset>
582	valueDomain ::	name < valuedomain >
583	vdAlias ::	name
584	variable ::	name
585	varAlias ::	name
586	ruleName ::	name
587	antecedentCondition ::	boolean
588	consequentCondition ::	boolean
589	errorCode ::	errorcode_vd
590	errorLevel ::	errorlevel_vd
591		

592

598

593 Constraints

- antecedentCondition and consequentCondition can refer only to the Value Domains or Variables specified in the dpRulesetSignature.
- Either ruleName is specified for all the Rules of the Ruleset or for none.
- If specified, then ruleName must be unique within the Ruleset.

599 Semantic specification

This operator defines a persistent Data Point Ruleset named rulesetName that can be used for validation purposes.

A Data Point Ruleset is a persistent object that contains Rules to be applied to the Data Points of a Data Set¹. The Data Point Rulesets can be invoked by the **check_datapoint** operator. The Rules are aimed at checking the combinations of values of the Data Set Components, assessing if these values fulfil the logical conditions expressed by the Rules themselves. The Rules are evaluated independently for each Data Point, returning a Boolean scalar value (i.e., TRUE for valid results and FALSE for non-valid results).

Each Rule contains an (optional) antecedentCondition *boolean* expression followed by a consequentCondition *boolean* expression and expresses a logical implication. Each Rule states that when the antecedentCondition evaluates to TRUE for a given Data Point, then the consequentCondition is expected to be TRUE as well. If this implication is fulfilled, the result is considered as valid (TRUE), otherwise as non-valid (FALSE). On the other side, if the antecedentCondition evaluates to FALSE, the consequentCondition does not applies and is not evaluated at all, and the result is considered as valid (TRUE). In case the antecedentCondition is absent then it is assumed to be always TRUE, therefore the consequentCondition is expected to evaluate to TRUE for all the Data

614 Points. See an example below:

¹ In order to apply the Ruleset to more Data Sets, these Data Sets must be composed together using the appropriate VTL operators in order to obtain a single Data Set.

Rule	Meaning
On Value Domains: when flow_type = "CREDIT" or flow_type = "DEBIT" then numeric_value >= 0	When the Component of the Data Set which is defined on the Value Domain named flow_type takes the value "CREDIT" or the value "DEBIT", then the other Component defined on the Value Domain named numeric_value is expected to have a zero or positive value.
On Variables: when flow = "CREDIT" or flow = "DEBIT" then obs_value >= 0	When the Component of the Data Set named flow has the value "CREDIT" or "DEBIT" then the Component named obs_value is expected to have a value greater than zero.

⁶¹⁶

617 The definition of a Ruleset comprises a signature (dpRulesetSignature), which specifies the Value Domains or 618 Variables on which the Ruleset is defined and a set of Rules, that are the Boolean expressions to be applied to 619 each Data Point. The antecedentCondition and consequentCondition of the Rules can refer only to the Value 620 Domains or Variables of the Ruleset signature. The Value Domains or the Variables of the Ruleset signature identify the space in which the rules are defined 621 622 while each Rule provides for a criterion that demarcates the Set of valid combinations of Values inside this space. 623 The Data Point Rulesets can be defined in terms of Value Domains in order to maximize their reusability, in fact 624 this way a Ruleset can be applied on any Data Set which has Components which take values on the Value

625 Domains of the Ruleset signature. The association between the Components of the Data Set and the Value 626 Domains of the Ruleset signature is provided by the **check_datapoint** operator at the invocation of the Ruleset. 627 When the Ruleset is defined on Variables, their reusability is intentionally limited to the Data Sets which contains 628 such Variables (and not to other possible Variables which take values from the same Value Domain). If at a later 629 stage the Ruleset would need to be applied also to other Variables defined on the same Value Domain, a similar 630 Ruleset should be defined also for the other Variable.

631 Rules are uniquely identified by ruleName. If omitted then ruleName is implicitly assumed to be the progressive order number of the Rule in the Ruleset. Please note however that, using this default mechanism, the Rule Name 632 can change if the Ruleset is modified, e.g., if new Rules are added or existing Rules are deleted, and therefore the 633 634 users that interpret the validation results must be aware of these changes. In addition, if the results of more than one Ruleset have to be combined in one Data Set, then the user should make the relevant rulesetNames different. 635 636 As said, each Rule is applied in a row-wise fashion to each individual Data Point of a Data Set. The references to the Value Domains defined in the antecedentCondition and consequentCondition are replaced with the values 637 638 of the respective Components of the Data Point under evaluation.

639 640

641

Examples

```
define datapoint ruleset DPR_1 (valuedomain flow_type as A, numeric_value as B) is
when A = "CREDIT" or A = "DEBIT" then B >= 0 errorcode "Bad value" errorlevel 10
```

645 end datapoint ruleset

```
646
```

```
define datapoint ruleset DPR_2 (variable flow as F, obs_value as O) is
when F = "CREDIT" or F = "DEBIT" then O >= 0 errorcode "Bad value"
end datapoint ruleset
```

650 define hierarchical ruleset

651

652 Semantics

This operator defines a persistent Hierarchical Ruleset that contains Rules to be applied to individual Components of a given Data Set in order to make validations or calculations according to hierarchical

- 655 relationships between the relevant Code Items. These Rulesets are also called "vertical" taking into account the tabular representation of a Data Set (considered as a mathematical function), in which each (vertical) column 656 657 represents a variable and each (horizontal) row represents a Data Point: these Rulesets are applied on variables
- 658 (columns), i.e., vertically on the tabular representation of a Data Set.

A main purpose of the hierarchical Rules is to express some more aggregated Code Items (e.g. the continents) in 659 terms of less aggregated ones (e.g., their countries) by using Code Item Relationships. This kind of relations can 660 be applied to aggregate data, for example to calculate an additive measure (e.g., the population) for the 661 aggregated Code Items (e.g., the continents) as the sum of the corresponding measures of the less aggregated 662 ones (e.g., their countries). These rules can be used also for validation, for example to check if the additive 663 664 measures relevant to the aggregated Code Items (e.g., the continents) match the sum of the corresponding measures of their component Code Items (e.g., their countries), provided that the input Data Set contains all of 665 666 them, i.e. the more and the less aggregated Code Items.

- Another purpose of these Rules is to express the relationships in which a Code Item represents some part of 667 another one, (e.g., "Africa" and "Five largest countries of Africa", being the latter a detail of the former). This kind 668 669 of relationships can be used only for validation, for example to check if a positive and additive measure (e.g., the 670 population) relevant to the more aggregated Code Item (e.g., Africa) is greater than the corresponding measure of the other more detailed one (e.g., "5 largest countries of Africa"). 671
- The name "hierarchical" comes from the fact that this kind of Ruleset is able to express the hierarchical 672 relationships between Code Items at different levels of detail, in which each (aggregated) Code Item is expressed 673 674 as a partition of (disaggregated) ones. These relationships can be recursive, i.e., the aggregated Code Items can 675 be in their turn component of even more aggregated ones, without limitations about the number of recursions.
- As a first simple example, the following Hierarchical Ruleset named "BeneluxCountriesHierarchy" contains a 676 677 single rule that asserts that, in the Value Domain "Geo Area", the Code Item BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS: 678
- 679
- define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule Geo_Area) is 680 BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS 681 end hierarchical ruleset 682 683 **Syntax** 684 685 define hierarchical ruleset rulesetName (hrRulesetSignature) is 686 hrRule 687 {; hrRule }* 688 end hierarchical ruleset 689
- hrRulesetSignature ::= vdRulesetSignature | varRulesetSignature 690

{ when leftCondition then }

- 691 vdRulesetSignature ::= valuedomain { condition vdConditioningSignature } rule ValueDomain
- vdConditioningSignature ::= condValueDomain { as vdAlias } { , condValueDomain { as vdAlias } }* 692
- varRulesetSignature ::= variable { condition varConditioningSignature } rule Variable 693
- varConditioningSignature ::= condVariable { as vdAlias } { , condVariable { as vdAlias } }* 694

leftCodeItem { = $| > | < | > = | < |^1$

{ + | - } rightCodeItem { [rightCondition] }

{ { + | - }¹ rightCodeltem { [rightCondition] } }*

hrRule ::= { ruleName : } codeltemRelation { errorcode errorCode } { errorlevel errorLevel } 695

codeItemRelation ::= 696

Syntax description

697

698

- 699
- 700 701

703		
704	rulesetName	the name of the Hierarchical Ruleset to be defined.
705	<u>hrRulesetSignature</u>	the signature of the Ruleset. It specifies the Value Domain or Variable on which the
706		Ruleset is defined, and the Conditioning Signature.
707	vdRulesetSignature	the signature of a Ruleset defined on Value Domains
708	varRulesetSignature	the signature of a Ruleset defined on Variables
709	<u>hrRule</u>	a single hierarchical rule, as described below.
710	vdConditioningSignature	specifies the Value Domains on which the conditions are defined. The Ruleset is meant
711		to be applicable to the Data Sets having Components that take values on the Value
710		specifies the Value Domains on which the conditions are defined. The Ruleset is meant

712 713 714	ruleValueDomain	Domain on which the ruleset is defined (i.e., ruleValueDomain) and on the conditioning Value Domains (i.e., condValueDomain). the Value Domain on which the Ruleset is defined
715	condValueDomain	a conditioning Value Domain of the Ruleset
716	vdAlias	an (optional) alias assigned to a Value Domain and valid only within the Ruleset, this
717		can be used for the sake of compactness in writing leftCondition and rightCondition. If
718		an alias is not specified then the name of the Value Domain (i.e., condValueDomain)
719		must be used.
720	varConditioningSignature	the signature of the (possible) conditions of the Ruleset defined on Variables. It
721		specifies the Represented Variables (see the information model) on which these
722		conditions are defined. The Ruleset is meant to be applicable to any Data Set having
723		Components which are defined by the Variable on which the Ruleset is expressed (i.e.,
724		variable) and on the Conditioning Variables.
725	ruleVariable	the variable on which the Ruleset is defined
726	condVariable	a conditioning Variable of the Ruleset
727	varAlias	an (optional) alias assigned to a Variable and valid only within the Ruleset, this can be
728		used for the sake of compactness in writing leftCondition and rightCondition. If an
729		alias is not specified then the name of the Variableomain (parameter condVariable)
730		must be used.
731	ruleName	the name assigned to the specific Rule within the Ruleset. If the Ruleset is used for
732	lueivame	validation then the ruleName identifies the validation results of the various Rules of
733		the Ruleset. The ruleName is optional and, if not specified, is assumed to be the
734		progressive order number of the Rule in the Ruleset. However please note that, if
735		ruleName is omitted, then the Rule names can change in case the Ruleset is modified,
736		e.g., if new Rules are added or existing Rules are deleted, and therefore the users that
737		interpret the validation results must be aware of these changes. In addition, if the
738		results of more than one Ruleset have to be combined in one Data Set, then the user
739		should make the relevant rulesetNames different.
740	codeltemRelation	specifies a (possibly conditioned) Code Item Relation. It expresses a logical relation
741		between Code Items belonging to the Value Domain of the hrRulesetSignature,
742		possibly conditioned by the Values of the Value Domains or Variables of the
743		Conditioning Signature. The relation is expressed by one of the symbols =, >, >=, <, <=,
744		that in this context denote special logical relationships typical of Code Items. The first
745		member of the relation is a single Code Item. The second member of the relationship
746		is the composition of one or more Code Items combined using the symbols $\mbox{+}$ or -,
747		which in turn also denote special logical operators typical of Code Items. The meaning
748		of these symbols is better explained below and in the User Manual.
749	errorCode	a literal denoting the error code associated to the rule, to be assigned to the possible
750		non-valid results in case the Rule is used for validation. If omitted then no error code
751		is assigned (NULL value). VTL assumes that a Value Domain errorcode_vd of the error
752		codes exists in the Information Model and contains all the possible error codes: the
753		errorCode literal must be one of the possible Values of such a Value Domain. VTL
754		assumes also that a Variable errorcode for describing the error codes exists in the IM
755		and is a dependent variable of the Data Sets which contain the results of the
756		validation.
757	errorLevel	a literal denoting the error level (severity) associated to the rule, to be assigned to the
758		possible non-valid results in case the Rule is used for validation. If omitted then no
759		error level is assigned (NULL value). VTL assumes that a Value Domain errorlevel_vd
760		of the error levels exists in the Information Model and contains all the possible error
761		levels: the errorLevel literal must be one of the possible Values of such a Value
762		Domain. VTL assumes also that a Variable errorlevel for describing the error levels
763		exists in the IM and is a dependent variable of the Data Sets which contain the results
764		of the validation.
765	leftCondition	a <i>boolean</i> expression which defines the pre-condition for evaluating the left member
766		Code Item (i.e., it is evaluated only when the leftCondition is TRUE); It can contain
767		references to the Value domains or the Variables of the conditioningSignature of the
768		Ruleset and Constants; all the VTL-ML component level operators are allowed. The
769		leftCondition is optional, if missing it is assumed to be TRUE and the Rule is always
770		evaluated.
771	leftCodeItem	a Code Item of the Value Domain specified in the hrRulesetSignature.
, , 1		a sear tem of the value Domain specifica in the initial obtolgraturo.

772 773 774 775	rightCodeItem rightCondition	a Code Item of the Value Domain specified in the hrRulesetSignature. a <i>boolean</i> scalar expression which defines the condition for a right member Code Item to contribute to the evaluation of the Rule (i.e., the right member Code Item is taken into account only when the relevant rightCondition is TRUE). It can contain references
776		to the Value Domains or Variables of the vdConditioningSignature or
777		varConditioningSignature of the Ruleset and Constants; all the VTL-ML component
778		level operators are allowed. The rightCondition is optional, if omitted then it is
779		assumed to be TRUE and the right member Code Item is always taken into account.
780		

>

781 Input parameters type782

102		
783	rulesetName ::	name < ruleset >
784	ruleValueDomain ::	name <valuedomain< td=""></valuedomain<>
785	condValueDomain ::	name <valuedomain< td=""></valuedomain<>
786	vdAlias ::	name
787	ruleVariable ::	name
788	condVariable ::	name
789	varAlias ::	name
790	ruleName ::	name
791	errorCode ::	errorcode_vd
792	errorLevel ::	errorlevel_vd
793	leftCondition ::	boolean
794	leftCodeItem ::	name
795	rightCodeItem ::	name
796	rightCondition ::	boolean

Constraints

797 798

803

- leftCondition and rightCondition can refer only to Value Domains or Variables specified in vdConditioningSignature or varConditioningSignature.
- Either the ruleName is specified for all the Rules of the Ruleset or for none.
- If specified, the ruleName must be unique within the Ruleset.

804 Semantic specification

- This operator defines a Hierarchical Ruleset named rulesetName that can be used both for validation and calculation purposes (see **check_hierarchy** and **hierarchy**). A Hierarchical Ruleset is a set of Rules expressing logical relationships between the Values (Code Items) of a Value Domain or a Represented Variable.
- Each rule contains a Code Item Relation, possibly conditioned, which expresses the **relation between Code** Items to be enforced. In the relation, the left member Code Item is put in relation to a combination of one or more right member Code Items. The kinds of relations are described below.
- The left member Code Item can be optionally conditioned through a leftCondition, a *boolean* expression which defines the cases in which the Rule has to be applied (if not declared the Rule is applied ever). The participation of each right member Code Item in the Relation can be optionally conditioned through a rightCondition, a
- *boolean* expression which defines the cases in which the Code Item participates in the relation (if not declared
- 815 the Code Item participates to the relation ever).
- As for the mathematical meaning of the relation, please note that each Value (Code Item) is the representation of
- an event belonging to a space of events (i.e., the relevant Value Domain), according to the notions of "event" and space of events" of the probability theory (see also the section on the Generic Models for Variables and Value
- Domains in the VTL IM). Therefore the relations between Values (Code Items) express logical implications between events.
- 821 The envisaged types of relations are: "coincides" (=), "implies" (<), "implies or coincides" (<=), "is implied by"
- 822 (>), "is implied by or coincides" (>=)². For example:
- 823 UnitedKingdom < Europe
- means that UnitedKingdom implies Europe (if a point belongs to United Kingdom it also belongs to Europe).
 January2000 < year2000
- means that January of the year 2000 implies the year 2000 (if a time instant belongs to "January 2000" it also
 belongs to the "year 2000")
- The first member of a Relation is a single Code Item. The second member can be either a single Code Item, like in
- the example above, or a **logical composition of Code Items** giving another Code Item as result. The logical

² "Coincides" means "implies and is implied"

composition can be defined by means of Code Item Operators, whose goal is to compose some Code Items inorder to obtain another Code Item.

- Please note that the symbols + and do not denote the usual operations of sum and subtraction, but logical
- operations between Code Items which are seen as events of the probability theory. In other words, two or more
 Code Items cannot be summed or subtracted to obtain another Code Item, because they are events and not
- numbers, however they can be manipulated through logical operations like "OR" and "Complement".
- 836 Note also that the + also acts as a declaration that all the Code Items denoted by + in the formula are mutually
- 837 exclusive one another (i.e., the corresponding events cannot happen at the same time), as well as the acts as a
- declaration that all the Code Items denoted by in the formula are mutually exclusive one another and
 furthermore that each one of them is a part of (implies) the result of the composition of all the Code Items having
 the + sign.
- At intuitive level, the symbol + means "*with*" (Benelux = Belgium *with* Luxembourg *with* Netherland) while the symbol - means "*without*" (EUwithoutUK = EuropeanUnion *without* UnitedKingdom).
- When these relationships are applied to additive numeric measures (e.g., the population relevant to geographical areas), they allow to obtain the measure values of the compound Code Items (i.e., the population of Benelux and EUwithoutUK) by summing or subtracting the measure values relevant to the component Code Items (i.e., the population of Belgium, Luxembourg and Netherland). This is why these logical operations are denoted in VTL
- through the same symbols as the usual sum and subtraction. Please note also that this property is valid whichever is the Data Set and whichever is the additive measure (provided that the possible other Identifier
- Components of the Data Set Structure have the same values), therefore the Rulesets of this kind are potentially
 largely reusable.
- The Ruleset Signature specifies the space on which the Ruleset is defined, i.e., the ValueDomain or Variable on which the Code Item Relations are defined (the Ruleset is meant to be applicable to Data Sets having a Component which takes values on such a Value Domain or are defined by such a Variable). The optional vdConditioningSignature specifies the conditioning Value Domains (the conditions can refer only to those Value
- 855 Domains), as well as the optional varConditioningSignature specifies the conditioning Variables (the conditions 856 can refer only to those Variables).
- The Hierarchical Ruleset may act on one or more Measures of the input Data Set provided that these measures are additive (for example it cannot be applied on a measure containing a "mean" because it is not additive).
- Within the Hierarchical Rulesets there can be dependencies between Rules, because the inputs of some Rules can be the output of other Rules, so the former can be evaluated only after the latter. For example, the data relevant to the Continents can be calculated only after the calculation of the data relevant to the Countries. As a consequence, the order of calculation of the Rules is determined by their mutual dependencies and can be different from the order in which the Rules are written in the Ruleset. The dependencies between the Rules form a directed acyclic graph.
- 865 The Hierarchical ruleset can be used for calculations to calculate the upper levels of the hierarchy if the data 866 relevant to the leaves (or some other intermediate level) are available in the operand Data Set of the hierarchy 867 operator (for more information see also the "Hierarchy" operator). For example, having additive Measures 868 broken by region, it would be possible to calculate these Measures broken by countries, continents and the 869 world. Besides, having additive Measures broken by country, it would be possible to calculate the same Measures 870 broken by continents and the world.
- When a Hierarchical Ruleset is used for calculation, only the Relations expressing coincidence (=) are evaluated (provided that the leftCondition is TRUE, and taking into account only right-side Code Items whose rightCondition is TRUE). The result Data Set will contain the compound Code Items (the left members of those relations) calculated from the component Code Items (the right member of those Relations), which are taken from the input Data Set (for more details about the evaluation options see the **hierarchy** operator). Moreover, the clauses typical of the validation are ignored (e.g., ErrorCode, ErrorLevel).
- The Hierarchical Ruleset can be also used to filter the input Data Points. In fact if some Code Items are defined equal to themselves, the relevant Data Points are brought in the result unchanged. For example, the following Ruleset will maintain in the result the Data Points of the input Data Set relevant to Belgium, Luxembourg and Netherland and will add new Data Points containing the calculated value for Benelux:
- 881882define hierarchical ruleset BeneluxRuleset (valuedomain rule GeoArea) is883Belgium = Belgium884; Luxembourg = Luxembourg885; Netherlands = Netherlands886; Benelux = Belgium + Luxembourg + Netherlands887end hierarchical ruleset888
- 889 The Hierarchical Rulesets can be used for validation in case various levels of detail are contained in the Data 890 Set to be validated (see also the check_hierarchy operator for more details). The Hierarchical Rulesets express

the coherency Rules between the different levels of detail. Because in the validation the various Rules can be evaluated independently, their order is not significant.

893 If a Hierarchical Ruleset is used for validation, all the possible Relations (=, >, >=, <, <=) are evaluated (provided

that the leftCondition is TRUE and taking into account only right-side Code Items whose rightCondition is TRUE).

The Rules are evaluated independently. Both the Code Items of the left and right members of the Relations are

expected to belong to and taken from the input Data Set (for more details about the evaluation options see the **check_hierarchy** operator). The Antecedent Condition is evaluated and, if TRUE, the operations specified in the

right member of the Relation are performed and the result is compared to the first member, according to the specified type of Relation. The possible relations in which Code Items are defined as equal to themselves are ignored. Further details are described in the **check hierarchy** operator.

901 If the data to be validated are in different Data Sets, either they can be joined in advance using the proper VTL 902 operators or the validation can be done by comparing those Data Sets directly, without using a Hierarchical 903 Ruleset (see also the **check** operator).

904

905 Through the right and left Conditions, the Hierarchical Rulesets allow to declare the time validity of 906 Rules and Relations. In fact leftCondition and RightCondition can be defined in term of the time Value Domain, 907 expressing respectively when the left member Code Item has to be evaluated (i.e., when it is considered valid) 908 and when a right member Code Item participates in the relation.

The following two simplified examples show possible ways of defining the European Union in term of participating Countries.

911 <u>Example 1 (for simplicity the time literals are written without the needed "cast" operation)</u>

912 define hierarchical ruleset EuropeanUnionAreaCountries1

912	denne merarchical mieser EuropeanomonAreacountres i
913	(valuedomain condition ReferenceTime as Time rule GeoArea) is
914	when between (Time, "1.1.1958", "31.12.1972")
915	then $EU = BE + FR + DE + IT + LU + NL$
916	; when between (Time, "1.1.1973", "31.12.1980")
917	then EU = same as above + DK + IE + GB
918	; when between (Time, "1.1.1981", "02.10.1985")
919	then EU = same as above + GR
920	; when between (Time, "1.1.1986", "31.12.1994")
921	then EU = same as above + ES + PT
922	; when between (Time, "1.1.1995", "30.04.2004")
923	then EU = same as above + AT + FI + SE
924	; when between (Time, "1.5.2004", "31.12.2006")
925	then EU = same as above +CY+CZ+EE+HU+LT+LV+MT+PL+SI+SK
926	; when between (Time, "1.1.2007", "30.06.2013")
927	then EU = same as above + BG + RO
928	; when >= "1.7.2013"
929	then EU = same as above + HR
930	end hierarchical ruleset
931	Example 2 (for simplicity the time literals are written without the needed "cast" operation)
932	define hierarchical ruleset EuropeanUnionAreaCountries2
933	(valuedomain condition ReferenceTime as Time rule GeoArea) is
934	EU = AT [Time >= "0101.1995"]
935	+ BE [Time >= "01.01.1958"]
936	+ BG [Time >= "01.01.2007"]
937	
938	+
939	+ SE [Time >= "01.01.1995"]
940	+ SI [Time >= "01.05.2004"]
941	+ SK [Time >= "01.05.2004"]
942	end hierarchical ruleset
943	The Hierarchical Rulesets allow defining hierarchies either having or not having levels (free hierarchies).
944	For example, leaving aside the time validity for sake of simplicity:
945	define hierarchical ruleset GeoHierarchy (valuedomain rule Geo_Area) is
946	World = Africa + America + Asia + Europe + Oceania
947	; Africa = Algeria + … + Zimbabwe

948	; America = Argentina + … + Venezuela
949	; Asia = Afghanistan + … + Yemen
950	; Europe = Albania + … + VaticanCity
951	; Oceania = Australia + … + Vanuatu
952	; Afghanistan = AF_reg_01 + … + AF_reg_N
953	
954	; Zimbabwe = ZW_reg_01 + … + ZW_reg_M
955	; EuropeanUnion = + + +
956	; CentralAmericaCommonMarket = + + +
957	; OECD_Area = + + +
958	end hierarchical ruleset
959	The Hierarchical Rulesets allow defining multiple relations for the same Code Item.
960	Multiple relations are often useful for validation. For example, the Balance of Payments item "Transport" can be
961	broken down both by type of carrier (Air transport, Sea transport, Land transport) and by type of objects
962	transported (Passengers and Freights) and both breakdowns must sum up to the whole "Transport" figure. In
963	the following example a RuleName is assigned to the different methods of breaking down the Transport.
964	
965	define hierarchical ruleset TransportBreakdown (variable rule BoPItem) is
966	transport_method1 : Transport = AirTransport + SeaTransport + LandTransport
967	; transport_method2 : Transport = PassengersTransport + FreightsTransport
968	end hierarchical ruleset
969	
970	Multiple relations can be useful even for calculation. For example, imagine that the input Data Set contains data
971	about resident units broken down by region and data about non-residents units broken down by country. In
972	order to calculate a homogeneous level of aggregation (e.g., by country), a possible Ruleset is the following:
973	
974	define hierarchical ruleset CalcCountryLevel (valuedomain condition Residence rule GeoArea) is
975	when Residence = "resident" then Country1 = Country1
976	; when Residence = "non-resident" then Country1 = Region11 + + Region1M
977	
978	; when Residence = "resident" then CountryN = CountryN
979	; when Residence = "non-resident" then CountryN = Region N1 + + RegionNM
980	end hierarchical ruleset
981	
982	In the calculation, basically, for each Rule, for all the input Data Points and provided that the conditions are
983	TRUE, the right Code Items are changed into the corresponding left Code Item, obtaining Data Points referred
984	only to the left Code Items. Then the outcomes of all the Rules of the Ruleset are aggregated together to obtain
985	the Data Points of the result Data Set.
986	As far as each left Code Item is calculated by means of a single Rule (i.e., a single calculation method), this
987	process cannot generate inconsistencies.
988	Instead if a left Code Item is calculated by means of more Rules (e.g., through more than one calculation method),
988 989	there is the risk of producing erroneous results (e.g., duplicated data), because the outcome of the multiple Rules
989 990	producing the same Code Item are aggregated together. Proper definition of the left or right conditions can avoid
990 991	this risk, ensuring that for each input Data Point just one Rule is applied.
991 992	If the Ruleset is aimed only at validation, there is no risk of producing erroneous results because in the validation
993 004	the rules are applied independently.
994 005	Everaples
995 006	Examples
996 007	1) The Hierarchical Ruleset is defined on the Value Domain "sex": Total is defined as Male + Female.
997 008	No conditions are defined.
998	define bienersbied with each each by (astronomeric with each) is
999 1000	define hierarchical ruleset sex_hr (valuedomain rule sex) is
1000	TOTAL = MALE + FEMALE
1001	end hierarchical ruleset
1002	
1003	2) BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS. No conditions
1004	are defined.
1005	define bievershied wileset Develop Countries Discussion (will be develop the October 2000) is
1006	define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule GeoArea) is
1007	BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS errorcode "Bad value for Benelux"

1008 end hierarchical ruleset

1009
3) American economic partners. The first rule states that the value for North America should be greater than the value reported for US. This type of validation is useful when the data communicated by the data provider do not cover the whole composition of the aggregate but only some elements. No conditions are defined.

1013	
1014	define hierarchical ruleset american_partners_hr (variable rule PartnerArea) is
1015	NORTH_AMERICA > US
1016	; SOUTH_AMERICA = BR + UY + AR + CL
1017	end hierarchical ruleset
1018	
1019	4) Example of an aggregate Code Item having multiple definitions to be used for validation only. The Balance of
1020	Payments item "Transport" can be broken down by type of carrier (Air transport, Sea transport, Land transport)
1021	and by type of objects transported (Passengers and Freights) and both breakdowns must sum up to the total
1022	"Transport" figure.
1023	
1024	define hierarchical ruleset validationruleset_bop (variable rule BoPItem) is
1025	transport_method1 : Transport = AirTransport + SeaTransport + LandTransport
1026	; transport_method2 : Transport = PassengersTransport + FreightsTransport
1027	end hierarchical ruleset
1028	
1029	

1030 VTL-DL - User Defined Operators

1031 define operator

1032	Syntax			
1033	define operator operator_name ({ parameter { , parameter }* })			
1034	{ returns outputType }			
1035	is operatorBody			
1036	end operator			
1037				
1038	parameter::= parameterNan	ne parameterType {		
1039				
1040	Syntax description			
1041	operator_name	the name of the operator		
1042	<u>parameter</u>	the names of parameters, their data types and defaultvalues		
1043	outputType	the data type of the artefact returned by the operator		
1044	operatorBody	the expression which defines the operation		
1045	parameterName	the name of the parameter		
1046	parameterType	the data type of the parameter		
1047	parameterDefaultValue	the default value for the parameter (optional).		
1048				
1049	Parameters			
1050	operator_name	name		
1051	outputType	a VTL data type as defined in outputParameterType (see the Data Type Syntax)		
1052	operatorBody	a VTL expression having the parameters (i.e., parameterName) as the operands		
1053	parameterName	name		
1054	parameterType	a VTL data type as defined in inputParameterType (see the Data Type Syntax)		
1055	parameterDefaultValue	a Value of the same type as the parameter		
1056				
1057	Constraints			
1058	• Each parameterName n	nust be unique within the list of parameters		
1059	• parameterDefaultValue	must be of the same data type as the corresponding parameter		
1060		d then the type of operatorBody must be compatible with outputType		
1061		then the type returned by the operatorBody expression is assumed		
1062		e is specified then the parameter is optional		
1063	•			
1065	Semantic specification			
1065		r-defined Operator by means of a VTL expression, specifying also the parameters,		
1065		y are mandatory or optional and their (possible) default values.		
1067	their data types, whether the	y are manuatory of optional and then (possible) actuate values.		
1068	Examples			
1069	Example1:			
1070		<1 (x integer, y integer)		
1071	returns boolean is			
1072	if $x > y$ then x else y			
1073	end operator			
1074				
1075	Example2:			
1076		(x integer default 0, y integer default 0)		
1077	returns number is			
1078	x+y			
1079	end operator			

Data type syntax 1080

1081 The VTL data types are described in the VTL User Manual. Types are used throughout this Reference Manual as 1082 both meta-syntax and syntax.

1083 They are used as meta-syntax in order to define the types of input and output parameters in the descriptions of VTL operators; they are used in the syntax, and thus are proper part of the VTL, in order to allow other operators 1084 1085 to refer to specific data types. For example, when defining a custom operator (see the **define operator** above), one will need to declare the type of the input/output parameters. 1086

1087 The syntax of the data types is described below (as for the meaning of these definitions, see the section VTL Data Types in the User Manual). See also the section "Conventions for describing the operators' syntax" in the chapter 1088 1089 "Overview of the language and conventions" above.

1090	<u>dataType</u> ::= <u>scalarType</u>	<u>scalarSetType</u>	componentType	<u>datasetType</u>	operatorType	<u>rulesetType</u>
------	---------------------------------------	----------------------	---------------	--------------------	--------------	--------------------

1091 <u>sca</u>	<u>alarType</u> ::= {	<u>basicScalarType</u>	valueDomainName	setName } ¹ {	{ <u>scalarTypeConstraint</u>]	}	not }	null	}
-----------------	-----------------------	------------------------	-----------------	--------------------------	---------------------------------	---	-------	------	---

1092 scalar | number | integer | string | boolean | time | date | time period | basicScalarType ::= 1093 duration 1094 valueBooleanCondition] | { scalarLiteral { , scalarLiteral }* } scalarTypeConstraint ::=

scalarSetType ::= set { < scalarType > } 1095

1096 componentType ::= componentRole { \leq scalarType > }

componentRole ::= component | identifier | measure | attribute | viral attribute 1097

- 1098 datasetType ::= dataset { { componentConstraint { , componentConstraint }* } }
- 1099 componentConstraint ::= componentType { componentName | multiplicityModifier }¹
- _{**+**|*****} 1100 multiplicityModifier ::=
- inputParameterType { * inputParameterType }* } -> outputParameterType 1101 operatorType ::=
- inputParameterType ::= scalarType | scalarSetType | componentType | datasetType | rulesetType 1102 1103 outputParameterType ::= scalarType | componentType | datasetType
- 1104 rulesetType ::= ruleset | dpRuleset | hrRuleset
- dpRuleset ::= datapoint 1105
- | datapoint_on_valuedomains { { valueDomainName { * valueDomainName } } } 1106
- | datapoint on variables { { variableName { * variableName } } } 1107
- hierarchical 1108 hrRuleset ::=
- | hierarchical on valuedomains { { valueDomainName 1109 1110
 - { (condValueDomainName { * condValueDomainName } *) } }
- | hierarchical on variables { { variableName 1111
- { (condVariableName { * condVariableName } } } } 1112
- 1113

Note that the valueBooleanCondition in scalarTypeConstraint is expressed with reference to the fictitious 1114 variable "value" (see also the User Manual, section "Conventions for describing the Scalar Types"), which 1115 1116 represents the generic value of the scalar type, for example:

1117	integer { 0, 1 }	means an integer number whose value is 0 or 1
1118	number [value >= 0]	means a number greater or equal than 0
1119	string { "A", "B", "C" }	means a string whose value is A, B or C:
1120	string [length (value) <= 10]	means a string whose length is lower or equal than 10:

General examples of the syntax for defining types can be found in the User Manual, section VTL Data Types and in the declaration of the data types of the VTL operators (sub-sections "input parameters type" and "result

type").

1125 VTL-ML - Typical behaviours of the ML Operators

1126 In this section, the common behaviours of some class of VTL-ML operators are described, both for a better

1127 understanding of the characteristics of such classes and to factor out and not repeat the explanation for each 1128 operator of the class.

1129 Typical behaviour of most ML Operators

- Unless differently specified in the Operator description, the Operators can be applied to Scalar Values, to DataSets and to Data Set Components.
- 1132 The operations on Scalar Values are primitive and are part of the core of the language. The other kind of 1133 operations can be typically be obtained by means of the scalar operations in conjunction with the Join operator, 1134 which is part of the core too.
- 1135 In the operations on Data Set, the Operators are meant to be applied by default only to the values of the 1136 Measures of the input Data Sets, leaving the Identifiers unchanged. The Attributes follow by default their specific
- 1137 propagation rules, which are described in the User Manual.
- 1138 In the operations on Components, the Operators are meant to be applied on the specified components of one
- 1139 input Data Set, in order to calculate a new component which becomes part of the resulting Data Set. In this case, 1140 the Attributes can be operated like the Measures.

Operators applicable on one Scalar Value or Data Set or Data Set Component

- 1143
- 1144 *Operations on Scalar values*
- 1145 The operator is applied on a scalar value and returns a scalar value.
- 1146

1150

1152

- 1147 *Operations on Data Sets*
- 1148 The operator is applied on a Data Set and returns a Data Set.
- 1149 For example, using a functional style and denoting the operator with **f** (...), this can written as:

DS_r := f(DS_1)

1151 The same operation, using an infix style and denoting the operator as **op**, can be also written as

DS_r **:= op** DS_1

1153 This means that the operator is applied to the values of all the Measures of DS_1 in order to produce 1154 homonymous Measures in DS_r.

- 1155 The application of the operator is allowed only if all the Measures of the operand Data Set are of a data type 1156 compatible with the operator (for example, a numeric operator is applicable only if all the Measures of the 1157 operand Data Sets are numeric). If the Measures of the operand Data Set are of different types, not all compatible 1158 with the operator to be applied, the membership or the keep clauses can be used to select only the proper
- 1159 Measures. No applicability constraints exist on Identifiers and Attributes, which can be any.
- As for the data content, for each Data Point (DP_1) of the operand Data Set, a result Data Point (DP_r) is returned,
 having for the Identifiers the same values as DP_1.
- For each Data Point DP_1 and for each Measure, the operator is applied on the Measure value of DP_1 and returns the corresponding Measure value of DP_r.
- 1164 For each Data Point DP_1 and for each viral Attribute, the value of the Attribute propagates unchanged in DP_r.
- As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set
- 1166 (DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes
- 1167 of the operand Data Set (DS_r maintains the Attributes declared as "viral" in DS_1; these Attributes are
- 1168 considered as "viral" also in DS_r, the "non-viral" Attributes of DS_1 are not kept in DS_r).
- 1169

1170 Operations on Data Set Components

- 1171 The operator is applied on a Component (COMP_1) of a Data Set (DS_1) and returns another Component 1172 (COMP_r) which alters the structure of DS_1 in order to produce the result Data Set (DS_r).
- 1173 For example, using a functional style and denoting the operator with f (...), this can be written as:
- 1174 DS_r := DS_1 [calc COMP_r := f (COMP_1)]
- 1175 The same operation, using an infix style and denoting the operator as **op**, can be written as:
- 1176 DS_r := DS_1 [calc COMP_r := op COMP_1]
- 1177 This means that the operator is applied on COMP_1 in order to calculate COMP_r.
- If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components of DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r.
- If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of the operator f (...) replace the DS_1 original values for such a Measure or Attribute in order to produce DS_r.
- If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can
 become inconsistent.
- 1185 In any case, an operation on the Components of a Data Set produces a new Data Set, as in the example above.
- 1186 The application of the operator is allowed only if the input Component belongs to a data type compatible with
- the operator (for example, a numeric operator is applicable only on numeric Components). As already said, COMP_r cannot have the same name of an Identifier of DS_1.
- 1189 As for the data content, for each Data Point DP_1 of DS_1, the operator is applied on the values of COMP_1 so 1190 returning the value of COMP_r.
- 1191 As for the data structure, like for the operations on Data Sets above, the result Data Set (DS_r) has the Identifiers
- and the Measures of the operand Data Set (DS_1), and has the Attributes resulting from the application of the
- attribute propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes declared as "viral" in DS_1; these Attributes are considered as "viral" also in DS_r, the "non-viral" Attributes of DS_1 are not
- kept in DS_r). If an Attribute is explicitly calculated, the attribute propagation rule is overridden.
- 1196 Moreover, in the case of the operations on Data Set Components, the (possible) new Component DS_r can be
- added to the original structure, the role of a (possible) existing DS_1 Component can be altered, the virality of a
- 1198 (possibly) existing DS_r Attribute can be altered, a (possible) COMP_r non-viral Attribute can be kept in the
- 1199 result. For the alteration of role and virality see also the **calc** clause.

Operators applicable on two Scalar Values or Data Sets or Data Set Components

1202

1205

- 1203 Operation on Scalar values
- 1204 The operator is applied on two Scalar values and returns a Scalar value.
- 1206 *Operation on Data Sets*
- The operator is applied either on two Data Sets or on one Data Set and one Scalar value and returns a Data Set.The composition of a Data Set and a Component is not allowed (it makes no sense).
- 1209 For example, using a functional style and denoting the operator with **f** (...), this can be written as:

$$DS_r := f(DS_1, DS_2)$$

- 1211 The same kind of operation, using an infix stile and denoting the operator as **op**, can be also written as
- 1212 DS_r := DS_1 op DS_2
- 1213 This means that the operator is applied to the values of all the couples of Measures of DS_1 and DS_2 having the 1214 same names in order to produce homonymous Measures in DS_r. DS_1 or DS_2 may be replaced by a Scalar 1215 value.
- The composition of two Data Sets (DS_1, DS_2) is allowed if the two operand Data Sets have exactly the same Measures and if all these Measures belong to a data type compatible with the operator (for example, a numeric operator is applicable only if all the Measures of the operand Data Sets are numeric). If the Measures of the operand Data Sets are different or of different types not all compatible with the operator to be applied, the membership or the **keep** clauses can be used to select only the proper Measures. The composition is allowed if

- 1221 these operand Data Sets have the same Identifiers or if one of them has at least all the Identifiers of the other one
- (in other words, the Identifiers of one of the Data Sets must be a superset of the Identifiers of the other one). No
- 1223 applicability constraints exist on the Attributes, which can be any.
- As for the data content, the operand Data Sets (DS_1, DS_2) are joined to find the couples of Data Points (DP_1,
- 1225 DP_2), where DP_1 is from the first operand (DS_1) and DP_2 from the second operand (DS_2), which have the
- 1226 same values as for the common Identifiers. Data Points that are not coupled are left out (the inner join is used).
 1227 An operand Scalar value is treated as a Data Point that couples with all the Data Points of the other operand. For
- each couple (DP_1, DP_2) a result Data Point (DP_r) is returned, having for the Identifiers the same values as
- 1229 DP_1 and DP_2.
- 1230 For each Measure and for each couple (DP_1, DP_2), the Measure values of DP_1 and DP_2 are composed through
- the operator so returning the Measure value of DP_r. An operand Scalar value is composed with all the Measures
- 1232 of the other operand.

1249

- For each couple (DP_1, DP_2) and for each Attribute that propagates in DP_r, the Attribute value is calculated by applying the proper Attribute propagation algorithm on the values of the Attributes of DP_1 and DP_2.
- As for the data structure, the result Data Set (DS_r) has all the Identifiers (with no repetition of common Identifiers) and the Measures of both the operand Data Sets, and has the Attributes resulting from the application of the attribute propagation rules on the Attributes of the operands (DS_r maintains the Attributes declared as "viral" for the operand Data Sets; these Attributes are considered as "viral" also in DS_r, the "nonviral" Attributes of the operand Data Sets are not kept in DS_r).

1241 Operation on Data Set Components

1242 The operator is applied either on two Data Set Components (COMP_1, COMP_2) belonging to the same Data Set 1243 (DS_1) or on a Component and a Scalar value, and returns another Component (COMP_r) which alters the

- structure of DS_1 in order to produce the result Data Set (DS_r). The composition of a Data Set and a Component is not allowed (it makes no sense).
- 1246 For example, using a functional style and denoting the operator with **f** (...), this can be written as:

- 1248 The same operation, using an infix style and denoting the operator as **op**, can be written as:
 - DS_r := DS_1 [calc COMP_r := COMP_1 op COMP_2]
- 1250 This means that the operator is applied on COMP_1 and COMP_2 in order to calculate COMP_r.
- If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components
 of DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r.
- If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of the operator f (...) replace the DS_1 original values for such a Measure or Attribute in order to produce DS_r.
- If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can become inconsistent.
- 1258 In any case, an operation on the Components of a Data Set produces a new Data Set, like in the example above.
- 1259 The composition of two Data Set Components is allowed provided that they belong to the same Data Set³. 1260 Moreover, the input Components must belong to data types compatible with the operator (for example, a 1261 numeric operator is applicable only on numeric Components). As already said, COMP_r cannot have the same 1262 name of an Identifier of DS_1.
- As for the data content, for each Data Point of DS_1, the values of COMP_1 and COMP_2 are composed through the operator so returning the value of COMP_r.
- 1265 As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set
- (DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes declared as "viral" in DS_1; these Attributes are considered as "viral" also in DS_r, the "non-viral" Attributes of DS_1 are not kept in DS_r). If an Attribute is explicitly calculated, the attribute propagation rule is overridden.
- 1270 Moreover, in the case of the operations on Data Set Components, a (possible) new Component DS_r can be added 1271 to the original structure of DS_1, the role of a (possibly) existing DS_1 Component can be altered, the virality of a

³ As obvious, the input Data Set can be the result of a previous composition of more other Data Sets, even within the same expression

- 1272 (possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be kept in the
- 1273 result. For the alteration of role and virality see also the **calc** clause.

1274 Operators applicable on more than two Scalar Values or Data Set 1275 Components

- 1276 The cases in which an operator can be applied on more than two Data Sets (like the Join operators) are described 1277 in the relevant sections.
- 1278 1279 *Operation on Scalar values*
- 1280 The operator is applied on more Scalar values and returns a Scalar value according to its semantics.
- 1281

1282 Operation on Data Set Components

- The operator is applied either on a combination of more than two Data Set Components (COMP_1, COMP_2) belonging to the same Data Set (DS_1) or Scalar values, and returns another Component (COMP_r) which alters the structure of DS_1 in order to produce the result Data Set (DS_r). The composition of a Data Set and a Component is not allowed (it makes no sense).
- 1287 For example, using a functional style and denoting the operator with **f** (...), this can be written as:

- 1289 This means that the operator is applied on COMP_1, COMP_2 and COMP_3 in order to calculate COMP_r.
- If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components of DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r.
- If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of the operator f (...) replace the DS_1 original values for such a Measure or Attribute in order to produce DS_r.
- If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can become inconsistent.
- 1297 In any case, an operation on the Components of a Data Set produces a new Data Set, like in the example above.
- 1298 The composition of more Data Set Components is allowed provided that they belong to the same Data Set⁴. 1299 Moreover, the input Components must belong to data types compatible with the operator (for example, a 1300 numeric operator is applicable only on numeric Components). As already said, COMP_r cannot have the same 1301 name of an Identifier of DS_1.
- As for the data content, for each Data Point of DS_1, the values of COMP_1, COMP_2 and COMP_3 are composed through the operator so returning the value of COMP_r.
- 1304 As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set
- 1305 (DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes 1306 of the operand Data Set (DS_r maintains the Attributes declared as "viral" in DS_1; these Attributes are 1307 considered as "viral" also in DS_r, the "non-viral" Attributes of DS_1 are not kept in DS_r). If an Attribute is 1308 explicitly calculated, the attribute propagation rule is overridden.
- Moreover, in the case of the operations on Data Set Components, a (possible) new Component DS_r can be added to the original structure of DS_1, the role of a (possibly) existing DS_1 Component can be altered, the virality of a (possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be kept in the
- 1311 (possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be k 1312 result. For the alteration of role and virality see also the **calc** clause.
- 1313

1314 Behaviour of Boolean operators

1315 The Boolean operators are allowed only on operand Data Sets that have a single measure of type *boolean*. As for 1316 the other aspects, the behaviour is the same as the operators applicable on one or two Data Sets described above.

⁴ As obvious, the input Data Set can be the result of a previous composition of more other Data Sets, even within the same expression

1317 Behaviour of Set operators

These operators apply the classical set operations (union, intersection, difference, symmetric differences) to the Data Sets, considering them as sets of Data Points. These operations are possible only if the Data Sets to be operated have the same data structure, and therefore the same Identifiers, Measures and Attributes⁵.

1321 Behaviour of Time operators

1322The time operators are the operators dealing with time, date and time_period basic scalar types. These types are1323described in the User Manual in the sections "Basic Scalar Types" and "External representations and literals used1324in the VTL Manuals".

- 1325The time-related formats used for explaining the time operators are the following (they are described also in the1326User Manual).
- 1327 For the *time* values: 1328 YYYY-MM-DD/YYYY-MM-DD 1329 Where YYYY are 4 digits for the year, MM two digits for the month, DD two digits for the day. For 1330 example: the whole year 2000 1331 2000-01-01/2000-12-31 1332 2000-01-01/2009-12-31 the first decade of the XXI century 1333 For the *date* values: 1334 YYYY-MM-DD 1335 The meaning of the symbols is the same as above. For example: 1336 2000-12-31 the 31st December of the year 2000 1337 2010-01-01 the first of January of the year 2010 1338 For the *time_period* values: 1339 YYYY{P}{NNN} 1340 Where *YYYY* are 4 digits for the year, *P* is one character for the period indicator of the regular period (it refers to the duration data type and can assume one of the possible values listed below), NNN are from 1341 zero to three digits which contain the progressive number of the period in the year. For annual data the 1342 A and the three digits NNN can be omitted. For example: 1343 1344 2000M12 the month of December of the year 2000 (duration: M) 201001 the first quarter of the year 2010 (duration: Q) 1345 1346 2010A the whole year 2010 (duration: A) 1347 2010 the whole year 2010 (duration: A) 1348 For the *duration* values, which are the possible values of the period indicator of the regular periods above, it is used for simplicity just one character whose possible values are the following: 1349 1350 <u>Code</u> <u>Duration</u> 1351 D Dav 1352 W Week Month 1353 Μ Ouarter 1354 Q 1355 S Semester 1356 А Year 1357 As mentioned in the User Manual, these are only examples of possible time-related representations, each VTL 1358 system is free of adopting different ones. In fact no predefined representations are prescribed, VTL systems are free to using they preferred or already existing ones. 1359

Several time operators deal with the specific case of Data Sets of time series, having an Identifier component that acts as the reference time and can be of one of the scalar types *time, date* or *time_period*; moreover this Identifier

1362 must be periodical, i.e. its possible values are regularly spaced and therefore have constant duration (frequency).

⁵ According to the VTL IM, the Variables that have the same name have also the same data type

- 1363 It is worthwhile to recall here that, in the case of Data Sets of time series, VTL assumes that the information 1364 about which is the Identifier Components that acts as the reference time and which is the period (frequency) of 1365 the time series exists and is available in some way in the VTL system. The VTL Operators are aware of which is 1366 the reference time and the period (frequency) of the time series and use these information to perform correct 1367 operations. VTL also assumes that a Value Domain representing the possible periods (e.g. the period indicator 1368 Value Domain shown above) exists and refers to the *duration* scalar type. For the assumptions above, the users 1369 do not need to specify which is the Identifier Component having the role of reference time.
- 1370 The operators for time series can be applied only on Data Sets of time series and returns a Data Set of time
- 1371 series. The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set
- 1372 and contains the same time series as the operand. The Attribute propagation rule is not applied.

1373 Operators changing the data type

1374 These Operators change the Scalar data type of the operands they are applied to (i.e. the type of the result is

different from the type of the operand). For example, the **length** operator is applied to a value of *string* type and
returns a value of *integer* type. Another example is the **cast** operator.

13771378 Operation on Scalar values

- 1379 The operator is applied on (one or more) Scalar values and returns one Scalar value of a different data type.
- 1380

1381 *Operation on Data Sets*

- 1382 If an Operator change the data type of the Variable it is applied to (e.g., from *string* to *number*), the result Data Set 1383 cannot maintain this Variable as it happens in the previous cases, because a Variable cannot have different data 1384 types in different Data Sets⁶.
- As a consequence, the converted variable cannot follow the same rules described in the sections above and mustbe replaced, in the result Data Set, by another Variable of the proper data type.
- For sake of simplicity, the operators changing the data type are allowed only on mono-measure operand Data Sets, so that the conversion happens on just one Measure. A default generic Measure is assigned by default to the result Data Set, depending on the data type of the result (the default Measure Variables are reported in the table
- 1390 below).
 - Therefore, if the operands are originally multi-measure, just one Measure must be pre-emptively selected (for example through the membership operator) in order to apply the changing-type operator. Moreover, if in the result Data Set a different Measure Variable name is desired than the one assigned by default, it is possible to change the Variable name (see the **rename** operator).
 - As for the Identifiers and the Attributes, the behaviour of these operators is the same as the typical behaviour of the unary or binary operators.
 - 1397

1398 Operation on Data Set Components

- For the same reasons above, the result Component cannot be the same as one of the operand Components andmust be of the appropriate Scalar data type.
- 1401

1402 Default Names for Variables and Value Domains used in this manual

- 1403The following table shows the default Variable names and the relevant default Value Domain. These are only the1404names used in this manual for explanatory purposes and can be personalised in the implementations. If VTL1405rules are exchanged, the personalised names need to be shared with the partners of the exchange.
- 1406

Scalar data type	Default Variable	Default Value Domain
string	string_var	string_vd

⁶ This according both to the mathematical meaning of a Variable and the VTL Information Model; in fact a Represented Variable is defined on just one Value Domain, which has just one data type, independently of the Data Structures and the Data Sets in which the Variable is used.

number	num_var	num_vd
integer	int_var	int_vd
time	time_var	time_vd
time_period	time_period_var	time_period_vd
date	date_var	date_vd
duration	duration_var	duration_vd
boolean	bool_var	bool_vd

1407 Type Conversion and Formatting Mask

The conversions between *scalar* types is provided by the operator **cast**, described in the section of the general purpose operators. Some particular types of conversion require the specification of a formatting mask, which specifies which format the source or the destination of the conversion should assume. The formatting masks for the various scalar types are explained here

1411 the various scalar types are explained here.

1412 If needed, the formatting Masks can be personalized in the VTL implementations. If VTL rules are exchanged, the1413 personalised masks need to be shared with the partners of the exchange.

1414 The Numbers Formatting Mask

1415	The nu	mber formattin	ng mask can be defined as a combination of characters whose meaning is the following:		
1416	0	"D"	one numeric digit (if the scientific notation is adopted, D is only for the mantissa)		
1417	0	"Е"	one numeric digit (for the exponent of the scientific notation)		
1418	0	" * "	an arbitrary number of digits		
1419	0	"+"	at least one digit		
1420	0	"." (dot)	can be used as a separator between the integer and the decimal parts.		
1421	0	"," (comma)	can be used as a separator between the integer and the decimal parts.		
1422					
1423	Exa	Examples of valid masks are:			
1424		DD.DDDDD, DD.D, D, D.DDDD, D*.D*, D+.D+ , DD.DDDEEEE			

1425 The Time Formatting Mask

1426The format of the values of the types *time, date* and *time_period* can be specified through specific formatting1427masks. A mask related to *time, date* and *time_period* is formed by a sequence of symbols which denote:

- 1428 the time units that are used, for example years, months, days
- the format in which they are represented, for example 4 digits for the year (2018), 2 digits for the month
 within the year (04 for April) and 2 digits for the day within the year and the month (05 for the 5th)
- 1431 the order of these parts; for example, first the 4 digits for the year, then the 2 digits for the month and finally
 1432 the 2 digits for the day
- other (possible) typographical characters used in the representation; for example, a line between the year
 and the month and between the month and the day (e.g., 2018-04-05).
- 1435 The time formatting masks follows the general rules below.
- 1436 For a numerical representations of the time units:
- A digit is denoted through the use of a special character which depends on the time unit. for example Y is
 for "year", M is for "month" and D is for "day"
- The special character is lowercase for the time units shorter than the day (for example h for "hour", m for
 "minute", s for "second") and uppercase for time units equal to "day" or longer (for example W for "week", Q
 for "quarter", S for "semester")

- The number of letters matches the number of digits, for example YYYY means that the year is represented
 with four digits and MM that the month is of 2 digits
- The numerical representation is assumed to be padded by leading 0 by default, for example MM means that
 April is represented as 04 and the year 33 AD as 0033
- If the numerical representation is not padded, the optional digits that can be omitted (if equal to zero) are
 enclosed within braces; for example {M}M means that April is represented by 4 and December by 12, while
 {YYY}Y means that the 33 AD is represented by 33
- 1449 For textual representations of the time units:
- Special words denote a textual localized representation of a certain unit, for example DAY means a textual
 representation of the day (MONDAY, TUESDAY ...)
- An optional number following the special word denote the maximum length, for example DAY3 is a textual
 representation that uses three characters (MON, TUE ...)
- The case of the special word correspond to the case of the value; for example day3 (lowercase) denotes the values mon, tue ...
- The case of the initial character of the special word correspond to the case of the initial character of the time
 format; for example Day3 denotes the values Mon, Tue ...
- The letter P denotes the period indicator, (i.e., day, week, month ...) and the letter p denotes ond digit for the number of periods
- 1460 Representation of more time units:
- If more time units are used in the same mask (for example years, months, days), it is assumed that the more detailed units (e.g., the day) are expressed through the order number that they assume within the less detailed ones (e.g., the month and the year). For example, if years, weeks and days are used, the weeks are within the year (from 1 to 53) and the days are within the year and the week (from 1 to 7).
- The position of the digits in the mask denotes the position of the corresponding values; for example,
 YYYMMDD means four digits for the year followed by two digits for the month and then two digits for the
 day (e.g., 20180405 means the year 2018, month April, day 5th)
- Any other character can be used in the mask, meaning simply that it appears in the same position; for
 example, YYYY-MM-DD means that the values of year, month and day are separated by a line (e.g., 201804-05 means the year 2018, month April, day 5th) and \PMM denotes the letter "P" followed by two
 characters for the month.
- The special characters and the special words, if prefixed by the reverse slash (\) in the mask, appear in the same position in the time format; for example \PMM\M means the letter "P" followed by two characters for the month and then the letter "M"; for example, PO3M means a period of three months (this is an ISO 8601 standard representation for a period of MM months). The reverse slash can appear in the format if needed by prefixing it with another reverse slash; for example YYYY\\MM means for digits for the year, a backslash and two digits for the month.
- 1478
- 1479 The **special characters** and the corresponding time units are the following:

1480	С	century
1481	Y	year
1482	S	semester
1483	Q	quarter
1484	М	month
1485	W	week
1486	D	day
1487	h	hour digit (by default on 24 hours)
1488	m	minute
1489	S	second
1490	d	decimal of second
1491	Р	period indicator (see the "duration" codes below)
1492	р	number of periods
1493		
1404		

1494 The **special words** for textual representations are the following:

1495	AM/PM	indicator of AM / PM (e.g. am/pm for "am" or "pm")
1496	MONTH	textual representation of the month (e.g., JANUARY for January)
1497	DAY	textual representation of the day (e.g., MONDAY for Monday)
1498		
1499	Examples of	formatting masks for the <i>time</i> scalar type:
1500 1501		e of type <i>time</i> denotes time intervals of any duration and expressed with any precision, which are ag time between two time points.
1502	These exampl	es are about three possible ISO 8601 formats for expressing time intervals:
1503	• Start	and end time points, such as "2015-03-03T09:30:45Z/2018-04-05T12:30:15Z"
1504	VTL	Mask: YYYY-MM-DDThh:mm:ssZ/YYYY-MM-DDThh:mm:ssZ
1505	• Start	and duration, such as "2015-03-03T09:30:45-01/P1Y2M10DT2H30M"
1506	VTL N	Aask: YYYY-MM-DDThh:mm:ss-01/PY\YM\MDD\DT{h}h\Hmm\M
1507	• Durat	tion and end, such as "P1Y2M10DT2H30M/2018-04-05T12:30:00+02"
1508	VTL N	Aask: PY\YM\MDD\DT{h}h\Hmm\M/YYYY-MM-DDThh:mm:ssZ
1509		her possible ISO formats having accuracy reduced to the day
1510	• Start	and end, such as "20150303/20180405"
1511		Mask: YYYY-MM-DD/YYYY-MM-DD
1512	• Start	and duration, such as "2015-03-03/P1Y2M10D"
1513		Aask: YYYY-MM-DD/PY\YM\MDD\D
1514	• Durat	tion and end, such as "P1Y2M10D/2018-04-05"
1515		Aask: PY\YM\MDD\DT/YYYY-MM-DD
1516		
1517	Examples of	formatting masks for the <i>date</i> scalar type:
1518 1519	A <i>date</i> scalar equal to zero.	type is a point in time, equivalent to an interval of time having coincident start and end duration
1520	These exampl	es about possible ISO 8601 formats for expressing dates:
1521	• Date	and day time with separators: "2015-03-03T09:30:45Z"
1522	VTL N	Mask: YYYY-MM-DDThh:mm:ssZ
1523	• Date	and day time without separators "20150303T093045-01"
1524		Aask: YYYYMMDDThhmmss-01
1525		her possible ISO formats having accuracy reduced to the day
1526	-	and day-time with separators "2015-03-03/2018-04-05"
1527		Mask: YYYY-MM-DD/YYYY-MM-DD
1528		and duration, such as "2015-03-03/P1Y2M10D"
1520		Aask: YYYY-MM-DD/PY\YM\MDD\D
1529	VILI	
1530	Examples of	formatting masks for the <i>time_period</i> scalar type:
1532	-	denotes non-overlapping time intervals having a regular duration (for example the years, the
1532 1533 1534	-	ears, the months, the weeks and so on). The time_period values include the representation of the
1535	These exampl	es are about possible formats for expressing time-periods:
1536	• Gene	ric time period within the year such as: "2015Q4", "2015M12""2015D365"
1537		Mask: YYYYP{ppp} where P is the period indicator and ppp three digits for the number of
1538 1539	-	ds, in the values, the period indicator may assume one of the values of the duration scalar type below.
1540	• Mont	hly period: "2015M03"
1541	VTL N	Aask: YYYY\MMM
1542		

1543 **Examples of formatting masks for the** *duration* scalar type:

- 1544 A Scalar Value of type *duration* denotes the length of a time interval expressed with any precision and without
- 1545 connection to any particular time point (for example one year, half month, one hour and fifteen minutes).
- 1546These examples are about possible formats for expressing durations (period / frequency)
- Non ISO representation of the *duration* in one character, whose possible codes are:

		F	, in provide the second s	
1548		Code	Duration	
1549		D	Day	
1550		W	Week	
1551		Μ	Month	
1552		Q	Quarter	
1553		S	Semester	
1554		А	Year	
1555	VTL M	ask: P	(period indicator)	
1556	• ISO 86	01 composite o	luration: "P10Y2M12DT02H30M15S" (P stands for "period")	
1557	VTL M	ask: \PYY\YM	1\MDD\DThh\Hmm\Mss\S	
1558	• ISO 86	01 duration in	weeks: "P018W" (P stands for "period")	
1559	VTL M	ask: \PWWW	∕\W	
1560	• ISO 4 characters representation: P10M (ten months), P02Q (two quarters)			
1561	VTL M	ask: \PppP		
1562				
1563	Examples of fix	ked characters	used in the ISO 8601 standard which can appear as fixed characters in the relevant	
1564	masks:			
1565	Р	designator of	duration	
1566	Т	designator of	ftime	
1567	Z	designator of	FUTC zone	
1568	"+"	designator of	Foffset from UTC zone	
1569	"_"	designator of	offset form UTC zone	
1570	/	time interval	separator	
1571				

1572 Attribute propagation

The VTL has different default behaviours for Attributes and for Measures, to comply as much as possible with the relevant manipulation needs. At the Data Set level, the VTL Operators manipulate by default only the Measures and not the Attributes. At the Component level, instead, Attributes are calculated like Measures, therefore the algorithms for calculating Attributes, if any, can be specified explicitly in the invocation of the Operators. This is the behaviour of clauses like **calc**, **keep**, **drop**, **rename** and so on, either inside or outside the join (see the detailed description of these operators in the Reference Manual).

1579 The users which want to automatize the propagation of the Attributes' Values can optionally enforce a 1580 mechanism, called Attribute Propagation rule, whose behaviour is explained in the User Manual (see the section 1581 "Behaviour for Attribute Components"). The adoption of this mechanism is optional, users are free to allow the 1582 attribute propagation rule or not. The users that do not want to allow Attribute propagation rules simply will not 1583 implement what follows.

1584 In short, the automatic propagation of an Attribute depends on a Boolean characteristic, called "virality", which 1585 can be assigned to any Attribute of a Data Set (a viral Attribute has virality = TRUE, a non-viral Attribute has 1586 virality=FALSE, if the virality is not defined, the Attribute is considered as non-viral).

By default, an Attribute propagates from the operand Data Sets (DS_i) to the result Data Set (DS_r) if it is "viral" at least in one of the operand Data Sets. By default, an Attribute which is viral in one of the operands DS_i is considered as viral also in the result DS r. 1590 The Attribute propagation rule does not apply for the time series operators.

1591 The Attribute propagation rule does not apply if the operations on the Attributes to be propagated are explicitly

1592 specified in the expression (for example through the **keep** and **calc** operators). This way it is possible to keep in

1593 the result also Attribute which are non-viral in all the operands, to drop viral Attributes, to override the

1594 (possible) default calculation algorithm of the Attribute, to change the virality of the resulting Attributes.

1595

1596

1598 VTL-ML - General purpose operators

```
()
        Parentheses :
1599
1600
1601
        Syntax
1602
                ( op )
1603
1604
        Input parameters
1605
                the operand to be evaluated before performing other operations written outside the parentheses.
        qo
1606
                According to the general VTL rule, operators can be nested, therefore any Data Set, Component or scalar
                op can be obtained through an expression as complex as needed (for example op can be written as the
1607
                expression 2 + 3).
1608
1609
1610
        Examples of valid syntaxes
1611
        (DS 1 + DS 2)
1612
        (CMP_1 - CMP_2)
        (2 + DS_1)
1613
        (DS_2 - 3 * DS_3)
1614
1615
1616
        Semantic for scalar operations
        Parentheses override the default evaluation order of the operators that are described in the section "VTL-ML -
1617
        Evaluation order of the Operators". The operations enclosed in the parentheses are evaluated first. For example
1618
        (2+3)*4 returns 20, instead 2+3*4 returns 14 because the multiplication has higher precedence than the
1619
        addition.
1620
1621
1622
        Input parameters type
1623
        op ::
                       dataset
1624
                         component
1625
                         scalar
1626
1627
        Result type
1628
        result ::
                       dataset
1629
                       | component
1630
                       | scalar
1631
        Additional constraints
1632
1633
        None.
1634
1635
        Behaviour
        As mentioned, the op of the parentheses can be obtained through an expression as complex as needed (for
1636
        example op can be written as DS_1 - DS_2. The part of the expression inside the parentheses is evaluated
1637
        before the part outside of the parentheses. If more parentheses are nested, the inner parentheses are evaluated
1638
        first, for example (20 - 10 / (2 + 3)) * 3 would give 54.
1639
1640
1641
        Examples
1642
        (DS_1 + DS_2) * DS_3
        (CMP_1 - CMP_2 / (CMP_3 + CMP_4)) * CMP_5
1643
        Persistent assignment :
                                                      <-
1644
1645
1646
        Syntax
1647
            re <- op
1648
```

1649 Input Parameters 1650 re the result 1651 ор the operand. According to the general VTL rule allowing the indentation of the operators, op can be 1652 obtained through an expression as complex as needed (for example op can be the expression DS 1 -DS 2). 1653 1654 Examples of valid syntaxes 1655 $DS_r < DS_1$ 1656 DS r <- DS 1 - DS 2 1657 1658 1659 Semantics for scalar operations 1660 empty 1661 1662 *Input parameters type* re :: 1663 name 1664 op :: dataset 1665 1666 *Result type* 1667 empty 1668 1669 Additional constraints 1670 The assignment cannot be used at Component level because the result of a Transformation cannot be a Data Set 1671 Component. When operations at Component level are invoked, the result is the Data Set which the output

1672 Components belongs to.1673

1674 Behaviour

1675 The input operand op is assigned to the **persistent** result re, which assumes the same value as op. As mentioned, 1676 the operand op can be obtained through an expression as complex as needed (for example op can be the 1677 expression DS_1 - DS_2).

1678 The result re is a persistent Data Set that has the same data structure as the Operand. For example in $DS_r < DS_1$ the data structure of DS_r is the same as the one of DS_1 .

1680 If the Operand op is a scalar value, the result Data Set has no Components and contains only such a scalar value.
 1681 For example, income <- 3 assigns the value 3 to the persistent Data Set named income.

1683 Examples

1684

1685 Given the operand Data Set DS_1:

1686

1682

DS_1			
ld_1	ld_2	Me_1	Me_2
2013	Belgium	5	5
2013	Denmark	2	10
2013	France	3	12
2013	Spain	4	20

1687

1688 Example 1:

1689

DS_r <- DS_1 results in:

DS_r (persistent Data Set)			
ld_1	ld_2	Me_1	Me_2
2013	Belgium	5	5
2013	Denmark	2	10
2013	France	3	12
2013	Spain	4	20

1690 Non-persistent assignment :

1691 Syntax

1692

1699

re := op

- 16931694 *Input parameters*
- 1695 **re** the result
- 1696opthe operand (according to the general VTL rule allowing the indentation of the operators, op can be1697obtained through an expression as complex as needed (for example op can be the expression DS_1 -1698DS_2).

:=

1700 Examples of valid syntaxes

- 1701 DS_r := DS_1
- 1702 DS_r := 3
- 1703 DS_r := DS_1 DS_2 1704 DS_r := 3+2
- 1704 DS_r := 3 1705

1706 Semantic for scalar operations1707 empty

1707 en 1708

1709 Input parameters type

- 1710
 re ::
 name

 1711
 op ::
 dataset | scalar
- 1711 op :: 1712

1713 *Result type*

- 1714 empty
- 1715

1716 Additional constraints

1717 The assignment cannot be used at Component level because the result of a Transformation cannot be a Data Set 1718 Component. When operations at Component level are invoked, the result is the Data Set which the output

1719 Components belongs to.

The same symbol denoting the non-persistent assignment Operator (**:=**) is also used inside other operations at Component level (for example in **calc** and **aggr**) in order to assign the result of the operation to the output

- Component: please note that in these cases the symbol := does not denote the non-persistent assignment (i.e., this Operator), which cannot operate at Component level, but a special keyword of the syntax of the other
- 1724 Operator in which it is used.
- 1725

1726 *Behaviour*

- 1727 The value of the operand op is assigned to the result re, which is non-persistent and therefore is not stored. As 1728 mentioned, the operand op can be obtained through an expression as complex as needed (for example op can be
- 1729 the expression $DS_1 DS_2$).

The result re is a non-persistent Data Set that has the same data structure as the Operand. For example in DS_r := DS 1 the data structure of DS r is the same as the one of DS 1.

- 1731 If the Operand op is a scalar value, the result Data Set has no Components and contains only such a scalar value.
- For example, income := 3 assigns the value 3 to the non-persistent Data Set named income.
- 1734

1735 *Examples*

- 17361737 Given the operand Data Sets DS_1:
- 1738

DS_1			
ld_1	ld_2	Me_1	Me_2
2013	Belgium	5	5
2013	Denmark	2	10
2013	France	3	12
2013	Spain	4	20

DS_r (non persistent Data Set)			
ld_1	ld_2	Me_1	Me_2
2013	Belgium	5	5
2013	Denmark	2	10
2013	France	3	12
2013	Spain	4	20

1740 Example 1: $DS_r := DS_1$ results in: 1741

1742

Membership : # 1743

1745 Syntax 1746 ds#comp 1747 Input Parameters 1748 Input Parameters 1749 ds the Data Set Component 1750 comp the Data Set Component 1751 Examples of valid syntaxes 1752 Examples of resolar operations 1753 Semantic for scalar operations 1754 Semanteers type 1755 ds :: dataset 1760 comp :: name < component > 1761 result type result :: dataset 1762 Result type result :: dataset 1764 Gomp ius the a Data Set Component of the Data Set ds comp ius the a Data Set Component in ds, then or Component in ds, then or Component in ds, then all the existing Measures are dropped. 1766 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped. 1773 romp iun ds. A default conventional name is assigned to the new Measure are the same as the values of comp iun ds. A default conventional name is assigned to the new Measure are dropped. 1773 romp iun ds. A default conventional name is assigned to the new Measure are dropped. 1774 romp iun ds	1744			
1747 Input Parameters 1748 Input Parameters 1749 ds the Data Set Component 1750 comp the Data Set Component 1751 Examples of valid syntaxes 1752 Examples of valid syntaxes 1753 DS_1#COMP_3 1754 Semantic for scalar operations 1755 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 ds :: dataset 1760 Comp :: name < component > 1761 Result type 1762 Result type 1763 Result type 1764 Comp must be a Data Set Component of the Data Set ds 1765 Additional constraints 1766 Comp is an Identifier or a Attribute Component in ds, then all the existing Measures of ds and a single Measure. 1767 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1768 Behaviour 1769 The membership operator returns a Dat	1745	Syntax		
1748 Input Parameters 1749 ds the Data Set Component 1750 comp the Data Set Component 1751 Examples of valid syntaxes 1752 Semantic for scalar operations 1755 Semantic for scalar operations 1756 This operator cannot be applied to scalar values. 1757 Input parameters type 1760 comp :: name < component > 1761 result type 1762 result type 1763 result type 1764 result :: 1765 dataset 1766 Additional constraints 1767 Comp must be a Data Set Component of the Data Set ds 1767 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1768 Behaviour 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1769 The Measure is added. The Data Points' values for the new Measures are dropped. 1770 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is admed. The Data Points' values		ds#com	р	
1749 ds the Data Set 1750 comp the Data Set Component 1751 Examples of valid syntaxes 1753 DS_1#COMP_3 1754 DS_1#COMP_3 1755 Semantic for scalar operations 1756 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 Input parameters type 1760 Comp :: name < component > 1761 Result type 1762 Result type 1763 Behaviour 1764 Additional constraints 1765 Comp must be a Data Set Component of the Data Set ds 1766 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1767 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures are dropped. 1771 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures are through 1772 result an a new Measure is added. The Data Points' values for the new Measure are the same as the values of 1772 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1773 th				
1750 comp the Data Set Component 1751 Examples of valid syntaxes 1752 Examples of valid syntaxes 1753 DS_1#COMP_3 1754 This operator cannot be applied to scalar values. 1755 Semantic for scalar operations 1756 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 Input parameters type 1759 ds :: dataset 1760 comp :: name < component > 1761 result type result type 1763 result type result : 1764 dataset	1748	Input Parame	ters	
1751 Examples of valid syntaxes 1752 Examples of valid syntaxes 1753 DS_1#COMP_3 1754 Semantic for scalar operations 1755 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 dataset 1760 comp ::: name < component > 1761 Result type 1762 result :: dataset 1764 additional constraints 1765 comp must be a Data Set Component of the Data Set ds 1766 comp must be a Data Set Component of the Data Set ds 1767 If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1769 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the 1771 result and a new Measure is daded. The Data Points' values for the new Measure are the same as the values of 1772 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1775 num_vari if needeal). 1776 The thtributes follow the Attribute propa	1749	ds	the Data Set	
1752 Examples of valid syntaxes 1753 DS_1#COMP_3 1754 Semantic for scalar operations 1755 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 ds :: dataset 1760 comp :: name < component > 1761 result type result type 1762 result type result :: 1763 result :: dataset 1764 Additional constraints comp must be a Data Set Component of the Data Set ds 1764 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1765 <i>Rehaviour</i> The omp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped. 1771 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure depending on its type. For example num_var if the Measure is numeric, string_var if it is string and so on (the default name can be renamed through the rename operator if needed). 1775 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propa	1750	comp	the Data Set Component	
IT753 DS_1#COMP_3 IT754 Semantic for scalar operations IT755 Semantic for scalar operations IT756 This operator cannot be applied to scalar values. IT757 Input parameters type ds :: dataset Comp :: name < component > IT61 Result type result :: dataset Comp must be a Data Set Component of the Data Set ds IT66 Behaviour IT67 Behaviour IT68 Behaviour IT69 sa default conventional name is assigned to the new Measures of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is numeric, string_var if it is string and so on (the default name can be renamed through the rename operator if needd). TT6 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. TT77 The same symbol denoting the membership operator (#) is also used inside other operator. <td>1751</td> <td></td> <td></td>	1751			
1754 Semantic for scalar operations 1755 This operator cannot be applied to scalar values. 1756 Input parameters type 1758 Input parameters type 1759 ds :: dataset 1760 comp :: name < component > 1761 result type result type 1763 result :: dataset 1764 Additional constraints 1765 Additional constraints 1766 Behaviour 1767 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1768 Behaviour 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1770 If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1771 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the 1772 result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of 1772 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1774 num_var if the Measure is added. The D				
1755 Semantic for scalar operations 1756 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 Input parameters type 1759 ds :: dataset 1760 comp :: name < component > 1761 result type 1762 Result type 1763 result :: dataset 1764 Additional constraints 1765 Additional constraints 1766 comp must be a Data Set Component of the Data Set ds 1767 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1768 Behaviour 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1770 If comp is an Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1771 If comp is an Adefault conventional name is assigned to the new Measure are the same as the values of 1773 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1774 the rename operator if needed). 1775 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are		DS_1#COM	5 _3	
1756 This operator cannot be applied to scalar values. 1757 Input parameters type 1758 Input parameters type 1759 d5 :: dataset 1760 comp :: name < component > 1761 result type result type 1763 result :: dataset 1764 Additional constraints comp must be a Data Set Component of the Data Set ds 1767 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1767 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped. 1771 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the 1772 result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of 1772 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1774 nu_vari if he Measure is numeric, string_vari if it is string and so on (the default name can be renamed through 1775 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result 1776 The Attributes follow the Attribute propagator (#) is also used inside other operat				
1757 Input parameters type 1758 Input parameters type 1759 ds :: dataset 1760 comp :: name < component > 1761 result type 1762 Result type 1764 result :: dataset 1765 Additional constraints 1766 comp must be a Data Set Component of the Data Set ds 1767 Behaviour 1768 Behaviour 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1769 If comp is a Measure in ds, then comp is maintained in the result while all other Measures of ds are dropped. 1770 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped. 1771 If comp is an Identifier or an Attribute Component in ds, then all the existing Measure is type: for example 1771 If comp in ds. A default conventional name is assigned to the new Measure are the same as the values of 1772 comp in ds. A default conventional name is assigned to the new Measure are the same at through 1775 the rename operator if needed). 1776 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result				
1758 Input parameters type 1759 ds :: dataset 1760 comp :: name < component > 1761 result type iname < component > 1762 Result type iname < component > 1763 result :: dataset 1764 iname < component of the Data Set ds		This operator	r cannot be applied to scalar values.	
dS :: dataset 1760 comp :: name < component > 1761 result type 1763 result :: dataset 1764 result :: dataset 1764 comp must be a Data Set Component of the Data Set ds 1767 result :: dataset 1768 Behaviour 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1769 If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1771 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the 1772 result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of 1773 comp in ds. A default conventional name is assigned to the new Measure are the same as the values of 1774 num_var if the Measure is numeric, string_var if it is string and so on (the default name can be renamed through 1776 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result 1775 The Attributes follow the Attribute propagation rule as usual (viral Attribute propagation rule too. 1777 The same symbol denoting the membership				
1760 comp :: name < component > 1761 result type 1763 result :: dataset 1764 result :: dataset 1765 Additional constraints comp must be a Data Set Component of the Data Set ds 1766 comp must be a Data Set Component of the Data Set ds feature 1767 result :: a dataset 1768 Behaviour ff comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1770 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is numeric, string_var if it is string and so on (the default name can be renamed through the rename operator if needed). 1776 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. 1778 The same symbol denoting the membership operator (#) is also used inside other operations at Component level 1779 (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not d				
 <i>Result type</i> <i>result ::</i> dataset <i>result ::</i> dataset <i>Additional constraints</i> <i>comp</i> must be a Data Set Component of the Data Set ds <i>comp</i> must be a Data Set Component of the Data Set ds <i>Behaviour</i> <i>Behaviour</i> The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
1762Result type1763result ::dataset1764		comp ::	name < component >	
 result :: dataset <i>Additional constraints</i> comp must be a Data Set Component of the Data Set ds <i>Behaviour</i> The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 Additional constraints comp must be a Data Set Component of the Data Set ds <i>Behaviour</i> The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 Additional constraints comp must be a Data Set Component of the Data Set ds <i>Behaviour</i> The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 		result ::	dataset	
 1766 comp must be a Data Set Component of the Data Set ds 1767 1768 Behaviour 1769 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1770 If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1711 If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the 1772 result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of 1773 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1774 num_var if the Measure is numeric, string_var if it is string and so on (the default name can be renamed through 1775 the rename operator if needed). 1776 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result 1777 as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. 1778 The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these 1780 cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at 1781 Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 <i>Behaviour</i> The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operator, which does not operate at Component level, but a special keyword of the syntax of the other operator in which it is used. 				
 <i>Behaviour</i> The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, String_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 		comp must b	e a Data Set Component of the Data Set ds	
 The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i> , string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operators at Component level (for example in join, calc, aggr) in order to identify the Components to be operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used.				
If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i> , string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used.				
 result and a new Measure is added. The Data Points' values for the new Measure are the same as the values of comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 num_var if the Measure is <i>numeric</i>, string_var if it is <i>string</i> and so on (the default name can be renamed through the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 the rename operator if needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
The same symbol denoting the membership operator (#) is also used inside other operations at Component level (for example in join , calc , aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 1782 1783				
 (for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
 cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level), but a special keyword of the syntax of the other operator in which it is used. 				
1781 Component level), but a special keyword of the syntax of the other operator in which it is used.17821783				
1782 1783				
1783		Component R	every, but a special keyword of the syntax of the other operator in which it is used.	
	1784	Examples		

1785 Given the operand Data Set DS_1:

DS_1				
ld_1	ld_2	Me_1	Me_2	At_1
1	А	1	5	
1	В	2	10	Р
2	А	3	12	

1789

Example 1: DS_r := DS_1#Me_1

results in:

1790 (assuming that At_1 is not viral in DS_1)

1791	
------	--

DS_r		
ld_1	ld_2	Me_1
1	А	1
1	В	2
2	А	3

1792 1793

(assuming that At_1 is viral in DS_1)

Example 2:

Example 3:

1794

DS_r			
ld_1	ld_2	Me_1	At_1
1	А	1	
1	В	2	Р
2	А	3	

1795

1796

 $DS_r := DS_1 # Id_1$ assuming that At_1 is viral in DS_1 results in:

1797

DS_r			
ld_1	ld_2	num_var	At_1
1	А	1	
1	В	1	Р
2	А	2	

1798 1799

DS_r := DS_1#At_1 assuming that At_1 is viral in DS_1 results in:

1800

DS_r			
ld_1	ld_2	string_var	At_1
1	А		
1	В	Р	Р
2	А		

1801

1802 User-defined operator call

```
1803
1804 Syntax
1805 operatorName ( { argument { , argument }* })
1806
```

1807	Input parameters	
1808	operatorName	the name of an existing user-defined operator
1809	argument	argument passed to the operator
1810	en gennenn	
1811	Examples of valid syntax	
1812	max1 (2, 3)	
1812	max1 (2, 3)	
1813	Semantic for scalar oper	ations
1815	It depends on the specif	ic user-defined operator that is invoked.
1816	.	
1817	Input parameters type	
1818	operatorName ::	name
1819	argument ::	A data type compatible with the type of the parameter of the user-defined operator that
1820		is invoked (see also the "Type syntax" section).
1821		
1822		
1823	Result type	
1824	result ::	The data type of the result of the user-defined operator that is invoked (see also the
1825		"Type syntax" section).
1826		
1827	Additional constraints	
1828	 operatorName must 	st refer to an operator created with the define operator statement.
1829	•	rgument value must be compliant with the type of the corresponding parameter of the
1829		
	user denned operat	or (the correspondence is in the positional order).
1831		
1832	Behaviour	
1833		ed operator is evaluated. The arguments passed to the operator in the invocation are
1834		esponding parameters in positional order, the first argument as the value of the first
1835		argument as the value of the second parameter, and so on. An underscore ("_") can be
1836		e value for an optional operand is omitted. One or more optional operands in the last
1837	positions can be simply	omitted.
1838		
1839	Examples	
1840	Example 1:	
1841		
1842	Definition of the max1 of	operator (see also "define operator" in the VTL-DL):
1843		
1844	define operato	r max1 (x integer, y integer)
1845	returns boolea	n
1846	is if x > y ther	
1847	end define ope	
1848		
1849	User-defined operator of	all of the max1 operator:
1850	oser denned operator e	
1851	max1 (2, 3)	
1852	max1 (2, 0)	
1052		
	Evelvetien of	an automal months and a seal
1853	Evaluation of a	an external routine : eval
1051		
1854		
1855	Syntax	
1856	eval (externalRoutine)	Name ({ argument } { , argument }*) language languageName returns outputType)
1857		Tanga (a gament) () a gament) / anga ago langa ago la
1858	Input parameters	
1858	externalRoutineName	the name of an external routine
1859		
	argument	the arguments passed to the external routine
1861	language	the implementation language of the routine
1862	outputType	the data type of the object returned by eval (see outputParameterType in Data
1863		type syntax)

1864 1865 1866	Examples of valid syntaxes	anguage "PL/SQL" returns string)				
1867		anguage i Loge returns string ;				
1868	Semantics for scalar operations:					
1869	This is not a scalar operation.					
1870						
1871	Input parameters type					
1872	externalRoutineName ::	name				
1873	argument ::	any data type				
1874	language ::	string				
1875	outputType ::	any data type restricting Data Set or scalar				
1876						
1877	Result Type					
1878	result ::	dataset				
1879						
1880	Additional constraints					
1881		perator that <u>does not allow nesting</u> and therefore a Transformation can contain				
1882 1883	of another operation as wel	and no other invocations. In other words, eval cannot be nested as the operand l as another operator cannot be nested as an operand of eval				
1884	-	containing eval must be persistent				
1885		e conventional name of a non-VTL routine				
1886 1887		ne must be consistent with the VTL principles, first of all its behaviour must be at and providing in output first-order functions				
1888	• argument is an argument	passed to the external routine, it can be a name or a value of a VTL artefacts or				
1889	some other parameter requ	ired by the routine				
1890	• the arguments passed to the routine correspond to the parameters of the invoked external routine in					
1891		the optional parameters are substituted by the underscore if missing. The				
1892		ut/output data types from and to the external routine processor is left to the				
1893	implementation.					
1894						
1895	Behaviour					
1896		external, non-VTL routine, and returns its result as a Data Set or a scalar. The				
1897 1898		in the invocation. The routine specified in the eval operator can perform any				
1898	internal logic.					
1899	Examples					
1900		atement which produces DS_r starting from DS_1:				
1902	Assuming that SQL5 is an SQL st	atchient which produces DO_1 starting from DO_1.				
1902	DS_r := eval(SQL3(DS_1) la	nguage "PL/SQL"				
1904		{ identifier <geo_area> ref_area,</geo_area>				
1905		identifier <date> time,</date>				
1906		measure <number> obs_value,</number>				
1907		attribute <string> obs_status })</string>				
1908						
1909	Assuming that f is an externally	defined Java method:				
1910						
1911 1912	DS_r := DS_1 [calc Me := eval	(f (Me) language "Java" returns integer)]				
1913	Type conversion :	cast				

Syntax

1915	cast (op , scalarType { , mask})
1916	

- Input parameters
- the operand to be cast ор
- scalarType the name of the scalar type into which op has to be converted a character literal that specifies the format of op
- mask

- 1922 Examples of valid syntaxes See the examples below.
- 1923

1924 1925 Semantics for scalar operations:

This operator converts the scalar type of op to the scalar type specified by scalarType. It returns a copy of op 1926 1927 converted to the specified scalarType.

1928 1929 *Input parameters type*

1930	op ::	dataset{ measure <scalar> _ }</scalar>	
1931		component <scalar></scalar>	
1932		scalar	
1933	scalarType ::	scalar type	(see the section: Data type syntax)
1934	mask ::	string	
1935			
1936	Result type		
1937	result ::	dataset{ measure <scalar> _ }</scalar>	
1938		component <scalar></scalar>	
1939		scalar	
1940			

1941 Additional constraints

- 1942 Not all the conversions are possible, the specified casting operation is allowed only according to the semantics described below. 1943
- 1944 The mask must adhere to one of the formats specified below. 1945

1946 **Behaviour**

1947 Conversions between basic scalar types

1948 The VTL assumes that a basic scalar type has a unique internal and more possible external representations 1949 (formats).

1950 The external representations are those of the Value Domains which refers to such a basic scalar types (more 1951 Value Domains can refer to the same basic scalar type, see the VTL Data Types in the User Manual). For example,

there can exist a boolean Value Domain which uses the values TRUE and FALSE and another boolean Value 1952 Domain which uses the values 1 and 0. The external representations are the ones of the Data Point Values and 1953

are obviously known by users. 1954

1955 The unique internal representation of a basic scalar type, instead, is used by the **cast** operator as a technical expedient to make the conversion between external representations easier: not necessarily users are aware of it. 1956

1957 In a conversion, the **cast** converts the source external representation into the internal representation (of the 1958 corresponding scalar type), then this last one is converted into the target external representation (of the target

1959 type). As mentioned in the User Manual, VTL does not prescribe any specific internal representation for the

1960 various scalar types, leaving different organisations free of using their preferred or already existing ones.

1961 In some cases, depending on the type of op, the output scalarType and the invoked operator, an automatic 1962 conversion is made, that is, even without the explicit invocation of the **cast** operator: this kind of conversion is called implicit casting. 1963

1964 In other cases, more than all when the implicit casting is not possible, the type conversion must be specified 1965 explicitly through the invocation of the **cast** operator: this kind of conversion is called **explicit casting**. If an explicit casting is specified, the (possible) implicit casting is overridden. There are two main categories of 1966 explicit casting: 1967

- "Explicit with mask": the explicit conversion uses a formatting mask that specifies how the actual casting is 1968 1969 performed;
- 1970 "Explicit w/o mask": the explicit conversion does not use a formatting mask.

1971 The table below summarises the possible castings between the basic scalar types. In particular, the input type is 1972 specified in the first column (row headings) and the output type in the first row (column headings).

Expected \rightarrow	integer	number	boolean	time	date	time_period	string	duration
Provided								

integer	-	Implicit	Explicit w/o mask	Not feasible	Not feasible	Not feasible	Implicit	Not feasible
number	Explicit w/o mask	-	Explicit w/o mask	Not feasible	Not feasible	Not feasible	Implicit	Not feasible
boolean	Explicit w/o mask	Explicit w/o mask	-	Not feasible	Not feasible	Not feasible	Implicit	Not feasible
time	Not feasible	Not feasible	Not feasible	-	Not feasible	Not feasible	Explicit with mask	Not feasible
date	Not feasible	Not feasible	Not feasible	Implicit	-	Explicit w/o mask	Explicit with mask	Not feasible
time_period	Not feasible	Not feasible	Not feasible	Implicit	Explicit with mask	-	Explicit w/o mask	Not feasible
string	Explicit w/o mask	Explicit with mask	Not feasible	Explicit with mask	Explicit with mask	Explicit with mask	-	Explicit with mask
duration	Not feasible	Not feasible	Not feasible	Not feasible	Not feasible	Not feasible	Explicit with mask	-

1975 The type of casting can be personalised in specific environments, provided that the personalisation is explicitly 1976 documented with reference to the table above. For example, assuming that an explicit **cast** with mask is 1977 required and that in a specific environment a definite mask is used for such a kind of conversions, the **cast** can 1978 also become implicit provided that the mask that will be applied is specified.

1979 The **implicit casting** is performed when a value of a certain type is provided when another type is expected. Its1980 behaviour is described here:

- From *integer* to *number*: an *integer* is provided when a *number* is expected (for example, an *integer* and a *number* are passed as inputs of a n-ary numeric operator); it returns a *number* having the integer part equal to the *integer* and the decimal part equal to zero;
- From *integer* to *string*: an *integer* is provided when a *string* is expected (for example, an *integer* is passed as an input of a *string* operator); it returns a *string* having the literal value of the *integer*;
- From *number* to *string*: a *number* is provided when a *string* is expected; it returns the *string* having the
 literal value of the *number*; the decimal separator is converted into the character "." (dot).
- From *boolean* to *string*: a *boolean* is provided when a *string* is expected; the boolean value TRUE is converted into the *string* "TRUE" and FALSE into the *string* "FALSE";
- From *date* to *time*: a *date* (point in time) is provided when a *time* is expected (interval of time): the conversion results in an interval having the same start and end, both equal to the original *date*;
- From *time_period* to *time*: a *time_period* (a regular interval of *time*, like a month, a quarter, a year ...) is provided when a *time* (any interval of time) is expected; it returns a *time* value having the same start and end as the *time_period* value.

1995 An implicit cast is also performed from a **value domain type** or a **set type** to a **basic scalar type**: when a *scalar* value belonging to a Value Domains or a Set is involved in an operation (i.e., provided as input to an operator), 1996 the value is implicitly cast into the basic scalar type which the Value Domain refers to (for this relationship, see 1997 1998 the description of Type System in the User Manual). For example, assuming that the Component birth country is 1999 defined on the Value Domain country, which contains the ISO 3166-1 numeric codes and therefore refers to the basic scalar type *integer*, the (possible) invocation length(birth_country), which calculates the length of the input 2000 2001 string, automatically casts the values of birth_country into the corresponding string. If the basic scalar type of the 2002 Value Domain is not compatible with the expression where it is used, an error is raised. This VTL feature is particularly important as it provides a general behaviour for the Value Domains and relevant Sets, preventing 2003 2004 from the need of defining specific behaviours (or methods or operations) for each one of them. In other words, 2005 all the Values inherit the operations that can be performed on them from the basic scalar types of the respective Value Domains. 2006

The **cast** operator can be invoked explicitly even for the conversions which allow an implicit cast and in this case
 the same behaviour as the implicit cast is applied.

The behaviour of the **cast** operator for the conversions that require **explicit casting without mask** is the following:

• From *integer* to *boolean*: if the *integer* is different from 0, then TRUE is returned, FALSE otherwise.

- From *number* to *integer*: converts a *number* with no decimal part into an *integer*; if the decimal part is present, a runtime error is raised.
- From *number* to *boolean*: if the *number* is different from 0.0, then TRUE is returned, FALSE otherwise.
- 2015 From *boolean* to *integer*: TRUE is converted into 1; FALSE into 0.
- From *boolean* to *number*: TRUE is converted into 1.0; FALSE into 0.0.
- From *date* to *time_period*: it converts a *date* into the corresponding daily value of *time_period*.
- From *string* to *integer*: the *integer* having the literal value of the *string* is returned; if the *string* contains a literal that cannot be matched to an *integer*, a runtime error is raised.
- From *string* to *time_period*: it converts a *string* value to a *time_period* value.
- When an **explicit casting with mask** is required, the conversion is made by applying the formatting mask which
 specifies the meaning of the characters in the output *string*. The formatting Masks are described in the section
 "VTL-ML Typical Behaviour of the ML Operators", sub-section "Type Conversion and Formatting Mask.
- 2024 The behaviour of the **cast** operator for such conversions is the following:
- From *time* to *string*: it is applied the *time* formatting mask.
- From *date* to *string*: it is applied the *time_period* formatting mask.
- From *time_period* to *date*: it is applied a formatting mask which accepts two possible values ("START", "END"). If "START" is specified, then the *date* is set to the beginning of the *time_period*; if "END" is specified, then the *date* is set to the end of the *time_period*.
- From *time_period* to *string*: it is applied the *time_period* formatting mask.
- *From duration to string:* a *duration* (an absolute time interval) is provided when a *string* is expected; it returns the *string* having the default *string* representation for the *duration*.
- From *string* to *number*: the *number* having the literal value of the *string* is returned; if the *string* contains a literal that cannot be matched to a *number*, a runtime error is raised. The *number* is generated by using a *number* formatting mask.
- From *string* to *time*: the *time* having the literal value of the *string* is returned; if the *string* contains a literal that cannot be matched to a *date*, a runtime error is raised. The *time* value is generated by using a *time* formatting mask.
- From *string* to *duration*: the *duration* having the literal value of the *string* is returned; if the *string* contains a literal that cannot be matched to a *duration*, a runtime error is raised. The *duration* value is generated by using a time formatting mask.

2042 **Conversions between basic scalar types and Value Domains or Set types**

- A value of a basic *scalar* type can be converted into a value belonging to a Value Domain which refers to such a *scalar* type. The resulting *scalar* value must be one of the allowed values of the Value Domain or Set; otherwise, a runtime error is raised. This specific use of **cast** operators does not really correspond to a type conversion; in more formal terms, we would say that it acts as a constructor, i.e., it builds an instance of the output type. Yet, towards a homogeneous and possibly simple definition of VTL syntax, we blur the distinction between constructors and type conversions and opt for a unique formalism. An example is given below.
- 2049 **Conversions between different Value Domain types**
- As a result of the above definitions, conversions between values of different Value Domains are also possible. Since an element of a Value Domain is implicitly cast into its corresponding basic scalar type, we can build on it to turn the so obtained scalar type into another Value Domain type. Of course, this latter Value Domain type must use as a base type this scalar type.
- 2054
- 2055 Examples
- 2056
- 2057 Example 1: from *string* to *number*
- 2058 ds2 := ds1[calc m2 := cast(m1, number, "DD.DDD") + 2]
- In this case we use explicit cast from *string* to *numbers*. The mask is used to specify how the *string* must be interpreted in the conversion.
- 2061
- 2062 Example 2: from *string* to *date*
- 2063 ds2 := ds1[calc m2 := cast(m1, date, "YYYY-MM-DD")]

2064 2065	In this case we use explicit cast from <i>string</i> to <i>date</i> . The mask is used to specify how the <i>string</i> must be interpreted in the conversion.
2066	
2067	Example 3: from <i>number</i> to <i>integer</i>
2068	ds2 := ds1[calc m2 := cast(m1, integer) + 3]
2069	In this case we cast a <i>number</i> into an <i>integer</i> , no mask is required.
2070	
2071	Example 4: from <i>number</i> to <i>string</i>
2072	ds2 := ds1[calc m2 := length(cast(m1, string))]
2073	In this case we cast a <i>number</i> into a <i>string</i> , no mask is required.
2074	
2075	Example 5: from <i>date</i> to <i>string</i>
2076	ds2 := ds1[calc m2 := cast(m1, string, "YY-MON-DAY hh:mm:ss")]
2077	In this example a <i>date</i> instant is turned into a <i>string</i> . The mask is used to specify the <i>string</i> layout.
2078	
2079	Example 6: from <i>string</i> to <i>GEO_AREA</i>
2080	ds2 := ds1[calc m2 := cast(GEO_STRING, GEO_AREA)]
2081	In this example we suppose we have elements of Value Domain Subset for GEO_AREA. Let GEO_STRING be a
2082 2083	string Component of Data Set ds1 with string values compatible with the GEO_AREA Value Domain Subset.
2085	Thus, the following expression moves ds1 data into ds2, explicitly casting strings to geographical areas.
2084	Example 7: from GEO_AREA to string
2085	ds2 := ds1[calc m2 := length(GEO_AREA)]
2080	In this example we use a Component GEO_AREA in a <i>string</i> expression, which calculates the length of the
2087	corresponding <i>string</i> ; this triggers the automatic cast.
2089	
2090	Example 8: from GEO_AREA2 to GEO_AREA1
2091	ds2 := ds1 [calc m2 := cast (GEO, GEO_AREA1)]
2092 2093	In this example we suppose we have to compare elements two Value Domain Subsets, They are both defined on top of Strings. The following cast expressions performs the conversion.
2094 2095 2096 2097	Now, Component GEO is of type GEO_AREA2, then we specify it has to be cast into GEO_AREA1. As both work on <i>strings</i> (and the values are compatible), the conversion is feasible. In other words, the cast of an operand into GEO_AREA1 would expect a <i>string</i> . Then, as GEO is of type GEO_AREA2, defined on top of <i>strings</i> , it is implicitly cast to the respective <i>string</i> ; this is compatible with what cast expects and it is then able to
2098	build a value of type GEO_AREA1.
2099	
2100	Example 9: from <i>string</i> to <i>time_period</i>
2101	In the following examples we convert from <i>strings</i> to <i>time_periods</i> , by using appropriate masks.
2102	The first quarter of year 2000 can be expressed as follows (other examples are possible):
2103	cast("2000Q1", time_period, "YYYY\QQ")
2104	cast("2000-Q1", time_period, "YYYY-\QQ")
2105	cast("2000-1", time_period, "YYYY-Q")
2106	cast("Q1-2000", time_period, "\QQ-YYYY")
2107	cast("2000Q01", time_period, "YYYY\QQQ")
2108	Examples of daily data:
2109	cast("2000M01D01", time_period, "YYYY\MMM\DDD")
2110	cast ("2000.01.01", time_period, "YYYY\.MM\.DD")
2111	

2112 VTL-ML - Join operators

The Join operators are fundamental VTL operators. They are part of the core of the language and allow to obtain the behaviour of the majority of the other non-core operators, plus many additional behaviours that cannot be obtained through the other operators.

- 2116 The Join operators are four, namely the inner_join, the left_join, the full_join and the cross_join. Because their
- 2117 syntax is similar, they are described together.

Join : inner_join, left_join, full_join, cross_join

2119	Syntax	
2120	joinOpe	e <u>rator(</u> ds { as alias } { , ds { as alias } }* { using usingComp { , usingComp }* }
2121		{ filter filterCondition }
2122		{ apply applyExpr
2123		calc calcClause
2124		aggr aggrClause { groupingClause } }
2125		{ keep comp {, comp }* drop comp {, comp }* }
2126		{ rename compFrom to compTo { , compFrom to compTo }* }
2127)
2128	joinOperator	::= { inner_join left_join full_join cross_join }1
2129	<u>calcClause</u>	::= { <u>calcRole</u> } calcComp := calcExpr
2130		<pre>{ , { <u>calcRole</u> } calcComp := calcExpr }*</pre>
2131	<u>calcRole</u>	::= {identifier measure attribute viral attribute}1
2132	<u>aggrClause</u>	::= { <u>aggrRole</u> } aggrComp := aggrExpr
2133		{ , { <u>aggrRole</u> } aggrComp := aggrExpr }*
2134	<u>aggrRole</u>	::= { measure attribute viral attribute } ¹
2135	groupingClause	e ::= { group by groupingId { , groupingId }*
2136		group except groupingId { , groupingId }*
2137		group all conversionExpr } ¹
2138		{ having havingCondition }
2139		
2140	In much in a name of a	
2141 2142	Input parameter joinOperator	the Join operator to be applied
2142	ds	the Data Set operands (at least one must be present)
2144	alias	optional aliases for the input Data Sets, valid only within the "join" operation to make it
2145		easier to refer to them. If omitted, the Data Set name must be used.
2146	usingComp	component of the input Data Sets whose values have to match in the join (the using
2147		clause is allowed for the left_join only under certain constraints described below and is
2148		not allowed at all for the full_join and cross_join)
2149	filterCondition	a condition (<i>boolean</i> expression) at component level, having only Components of the
2150 2151		input Data Sets as operands, which is evaluated for each joined Data Point and filters them (when TRUE the joined Data Point is kept, otherwise it is not kept)
2151	applyExpr	an expression, having the input Data Sets as operands, which is pairwise applied to all
2153	opp.)_/p.	their homonym Measure Components and produces homonym Measure Components in
2154		the result; for example if both the Data Sets ds1 and ds2 have the <i>numeric</i> measures m1
2155		and m2, the clause apply ds1 + ds2 would result in calculating m1 := ds1#m1 +
2156		ds2#m1 and $m2 := ds1#m2 + ds2#m2$
2157	<u>calcClause</u>	clause that specifies the Components to be calculated, their roles and their calculation
2158 2159	calcPolo	algorithms, to be applied on the joined and filtered Data Points. the role of the Component to be calculated
2159 2160	<u>calcRole</u> calcComp	the name of the Component to be calculated
2100	Salocomp	the name of the component to be calculated

2161	calcExpr	expression at component level, having only Components of the input Data Sets as
2162		operands, used to calculate a Component
2163	aggrClause	clause that specifies the required aggregations, i.e., the aggregated Components to be
2164		calculated, their roles and their calculation algorithm, to be applied on the joined and
2165		filtered Data Points
2166	<u>aggrRole</u>	the role of the aggregated Component to be calculated; if omitted, the Measure role is
2167		assumed
2168	aggrComp	the name of the aggregated Component to be calculated; this is a dependent Component
2169		of the result (Measure or Attribute, not Identifier)
2170	aggrExpr	expression at component level, having only Components of the input Data Sets as
2170	aggiexpi	operands, which invokes an aggregate operator (e.g. avg , count , max , see also the
2171		
2172		corresponding sections) to perform the desired aggregation. Note that the count operator is used in an aggrClause without parameters, e.g.:
2174		DS_1 [aggr Me_1 := count () group by Id_1)]
2175	groupingClause	the following alternative grouping options:
2176	groupingoladoo	group by the Data Points are grouped by the values of the specified Identifiers
2170		(groupingId). The Identifiers not specified are dropped in the result.
2178		group except the Data Points are grouped by the values of the Identifiers not
2179		specified as groupingId. The specified Identifiers are dropped in the
2180		result.
2181		group all converts the values of an Identifier Component using conversionExpr
2182		and keeps all the resulting Identifiers.
2183	groupingId	Identifier Component to be kept (in the group by clause) or dropped (in the group
2184		except clause).
2185	conversionExpr	specifies a conversion operator (e.g. time_agg) to convert an Identifier from finer to
2186	·	coarser granularity. The conversion operator is applied on an Identifier of the operand
2187		Data Set.
2188	havingCondition	a condition (<i>boolean</i> expression) at component level, having only Components of the
2188	navingeonation	input Data Sets as operands (and possibly constants), to be fulfilled by the groups of
2190		Data Points: only groups for which havingCondition evaluates to TRUE appear in the
2191		result. The havingCondition refers to the groups specified through the groupingClause,
2192		therefore it must invoke aggregate operators (e.g. avg, count, max,, see also the
2193		section Aggregate invocation). A correct example of havingCondition is
2194		max(obs_value) < 1000, while the condition obs_value < 1000 is not a right
2195		havingCondition, because it refers to the values of single Data Points and not to the
2196		groups. The count operator is used in a havingCondition without parameters, e.g.:
2197		sum (ds group by id1 having count () >= 10)
2198	comp	dependent Component (Measure or Attribute, not Identifier) to be kept (in the keep
2199		clause) or dropped (in the drop clause)
2200	compFrom	the original name of the Component to be renamed
2201	compTo	the new name of the Component atfer the renaming
2202		
2203	Examples of valid syntax	25
2204		ds2 as d2 using ld1, ld2
2205		e1 + d2#Me1 <10
2205	apply d1 /	
2200		Me2, Me3
2207		1 to Id10, id2 to id20
2208		
2209)	
	left icin (do1 op d1 do	
2211	left_join (ds1 as d1, ds	
2212		+ d2#Me1 <10
2213		1#Me1 + d2#Me3
2214	keep Me1	
2215	rename Id1 to	b Ident1, Me1 to Meas1
2216)	
2217	,	
2218	full_join (ds1 as d1, ds	
2219	tilter d1#Me1	+ d2#Me1 <10

2220	aggr Me1 :=	sum(Me1), attribute At20 := avg(Me2)
2221	group by Id	1, ld2
2222	having sum(M	e3) > 0
2223)	
2224		
2225	Semantics for scalar op	erations
2226	The join operator does	not perform scalar operations.
2227		
2228	Input parameters type	
2229	ds::	dataset
2230	alias ::	name
2231	usingId ::	name < component >
2232	filterCondition ::	component <boolean></boolean>
2233	applyExpr ::	dataset
2234	calcComp ::	name < component >
2235	calcExpr ::	component <scalar></scalar>
2236	aggrComp ::	name < component >
2237	aggrExpr ::	component <scalar></scalar>
2238	groupingId ::	name < identifier >
2239	conversionExpr ::	component <scalar></scalar>
2240	havingCondition ::	component <boolean></boolean>
2241	comp ::	name < component >
2242	compFrom ::	component <scalar></scalar>
2243	compTo ::	component <scalar></scalar>
2244	•	1
2245	Result type	
2246	result ::	dataset
2247		
2248	Additional constraints	
2249		distinct and different from the Data Set names. Aliases are mandatory for Data Sets which
2250		in the Join (self-join) and for non-named Data Set obtained as result of a sub-expression.
2250		t allowed for the full_join and for the cross_join , because otherwise a non-functional
2252	result could be obtaine	
2252		not specified (we will label this case as "Case A"), calling Id(ds _i) the set of Identifier
2253		$d ds_i$, the following group of constraints must hold ⁷ :
2255		or each pair ds _i , ds _j , either $Id(ds_i) \subseteq Id(ds_j)$ or $Id(ds_j) \subseteq Id(ds_i)$. In simpler words, the
2255		of the joined Data Sets must be a superset of the identifiers of all the other ones.
2250 2257		full_join , for each pair ds _i , ds _j , $Id(ds_i) = Id(ds_j)$. In simpler words, the joined Data Sets
2258	must have the san	
2259		artesian product), no constraints are needed.
2260		specified (we will label this case as "Case B", allowed only for the inner_join and the
2261		keys must appear as Components in all the input Data Sets. Moreover two sub-cases are
2262	allowed:	
2263		he constraints of the Case A are respected and the join keys are a subset of the common
2264		he joined Data Sets;
2265	• Sub-case B2:	
2266		e of inner_join , one Data Set acts as the reference Data Set which the others are joined to;
2267		e of left_join , this is the left-most Data Set (i.e., ds1);
2268		e input Data Sets, except the reference Data Set, have the same Identifiers [Id ₁ ,, Id _n];
2269		sing clause specifies all and only the common Identifiers of the non-reference Data Sets
2270	-	., Idn].
2271		st fulfil also other constraints:
2272		ggr clauses are mutually exclusive
2273		uses are mutually exclusive
2274		lependent Components (Measures and Attributes, not Identifiers)
2275	An Identifier not in	cluded in the group by clause (if any) cannot be included in the rename clause

⁷ These constraints hold also for the **full_join** and the **cross_join**, which do not allow the using clause.

- 2276 An Identifier included in the group except clause (if any) cannot be included in the rename clause. If the aggr clause is invoked and the grouping clause is omitted, no Identifier can be included in the rename 2277 2278 clause
- A dependent Component not included in the **keep** clause (if any) cannot be renamed 2279
- A dependent Component included in the **drop** clause (if any) cannot be renamed 2280 •

2282 **Behaviour**

2281

2301

2302 2303

2306

2307

2319 2320

2283 The **semantics of the join operators** can be procedurally described as follows.

- A relational join of the input operands is performed, according to SQL inner (inner join), left-outer 2284 (left join), full-outer (full join) and Cartesian product (cross join) semantics (these semantics will be 2285 explained below), producing an intermediate internal result, that is a Data Set that we will call "virtual" 2286 2287 (VDS_1) .
- The filterCondition, if present, is applied on VDS₁, producing the Virtual Data Set VDS₂. 2288
- 2289 The specified calculation algorithms (**apply**, **calc** or **aggr**), if present, are applied on VDS_2 . For the Attributes that have not been explicitly calculated in these clauses, the Attribute propagation rule is applied 2290 2291 (see the User Manual), so producing the Virtual Data Set VDS₃.
- 2292 The **keep** or **drop** clause, if present, is applied on VDS₃, producing the Virtual Data Set VDS₄.
- 2293 The **rename** clause, if present, is applied on VDS₄, producing the Virtual Data Set VDS₅.
- 2294 The final automatic alias removal is performed in order to obtain the output Data Set.
- 2295 An alias can be optionally declared for each input Data Set. The aliases are valid only within the "ioin" operation. in particular to allow joining a dataset with itself (self join). If omitted, the input Data Sets are referenced only 2296 2297 through their Data Set names. If the aliases are ambiguous (for example duplicated or equal to the name of 2298 another Data Set), an error is raised.
- 2299 The **structure of the virtual Data Set** VDS₁ which is the output of the relational join is the following.
- 2300 For the **inner_join**, the **left_join** and the **full_join**, the virtual Data Set contains the following Components:
 - The Components used as join keys, which appear once and maintain their original names and roles. In the cases A and B1, all of them are Identifiers. In the sub-case B2, the result takes the roles from the reference Data Set.
- 2304 In the sub-case B2: the Identifiers of the reference Data Set, which appear once and maintain their • 2305 original name and role.
 - The other Components coming from exactly one input Data Set, which appear once and maintain their • original name
- 2308 • The other Components coming from more than one input Data Set, which appears as many times as the 2309 Data Set they come from; to distinguish them, their names are prefixed with the alias (or the name) of the Data Set they come from, separated by the "#" symbol (e.g., dsi#cmpi). For example, if the 2310 Component "population" appears in two input Data Sets "ds1" and "ds2" that have the aliases "a" and 2311 "b" respectively, the Components "a#population" and "b#population" will appear in the virtual Data Set. 2312 If the aliases are not defined, the two Components are prefixed with the Data Set name (i.e., 2313 "ds1#population" and "ds2#population"). In this context, the symbol "#" does not denote the 2314 2315 membership operator but acts just as a separator between the the Data Set and the Component names.
- 2316 If the same Data Set appears more times as operand of the join (self-join) and the aliases are not defined, • an exception is raised because it is not allowed that two or more Components in the virtual Data Set 2317 2318 have the same name. In the self-join the aliases are mandatory to disambiguate the Component names.
 - If a Data Set in the join list is the result of a sub-expression, then an alias is mandatory all the same because this Data Set has no name. If the alias is omitted, an exception is raised.
- As for the **cross_join**, the virtual Data Set contains all the Components from all the operands, possibly prefixed 2321 2322 with the aliases to avoid ambiguities.
- 2323 The **semantics of the relational join** is the following.
- 2324 The join is performed on some join keys, which are the Components of the input Data Sets whose values are used 2325 to match the input Data Points and produce the joined output Data Points.
- 2326 By default (only for the **full_join** and the **cross_join**), the join is performed on the subset of homonym Identifier 2327 Components of the input Data Sets.
- 2328 The parameter **using** allows to specify different join keys than the default ones, and can be used only for the 2329 **inner** join and the left join in order to preserve the functional behaviour of the operations.
- 2330 The different kinds of relational joins behave as follows.
- inner join: the Data Points of ds1, ..., dsN are joined if they have the same values for the common 2331 Identifier Components or, if the using clause is present, for the specified Components. A (joined) virtual 2332 Data Point is generated in the virtual Data Set VDS₁ when a matching Data Point is found for each one of the 2333
- 2334 input Data Sets. In this case, the Values of the Components of a virtual Data Point are taken from the

corresponding Components of the matching Data Points. If there is no match for one or more input Data Sets,no virtual Data Point is generated.

- 2337 left join: the join is ideally performed stepwise, between consecutive pairs of input Data Sets, starting from the left side and proceeding towards the right side. The Data Points are matched like in the **inner** join, but a 2338 2339 virtual Data Point is generated even if no Data Point of the right Data Set matches (in this case, the Measures 2340 and Attributes coming from the right Data Set take the NULL value in the virtual Data Set). Therefore, for 2341 each Data Points of the left Data Set a virtual Data Point is always generated. These stepwise operations are 2342 associative. More formally, consider the generic pair $\langle ds_i, ds_{i+1} \rangle$, where ds_i is the result of the left join of the 2343 first "i" operands and ds_{i+1} is the i+1th operand. For each pair $\langle ds_i, ds_{i+1} \rangle$, the joined Data Set is fed with all 2344 the Data Points that match in ds_i and ds_{i+1} or are only in ds_i . The constraints described above guarantee the 2345 absence of null values for the Identifier Components of the joined Data Set, whose values are always taken 2346 from the left Data Set. If the join succeeds for a Data Point in ds_i , the values for the Measures and the 2347 Attributes are carried from ds_{i+1} as explained above. Otherwise, i.e., if no Data Point in ds_{i+1} matches 2348 the Data Point in ds_i, null values are given to Measures and Attributes coming only from ds_{i+1}.
- 2349 full_join: the join is ideally performed stepwise, between consecutive pairs of input Data Sets, starting from the left side and proceeding toward the right side. The Data Points are matched like in the inner_join and 2350 2351 left join, but the using clause is not allowed and a virtual Data Point is generated either if no Data Point of 2352 the right Data Set matches with the left Data Point or if no Data Point of the left Data Set matches with the 2353 right Data Point (in this case, Measures and Attributes coming from the non matching Data Set take the NULL value in the virtual Data Set). Therefore, for each Data Points of the left and the right Data Set, a virtual Data 2354 2355 Point is always generated. These stepwise operations are associative. More formally, consider the generic pair $\langle ds_i, ds_{i+1} \rangle$, where ds_i is the result of the **full_join** of the first "i" operands and ds_{i+1} is the i+1th operand. 2356 For each pair $\langle dS_i, dS_{i+1} \rangle$, the resulting Data Set is fed with the Data Points that match in dS_i and dS_{i+1} or that 2357 2358 are only in ds_i or in ds_{i+1} . If for a Data Point in ds_i the join succeeds, the values for the Measures and the 2359 Attributes are carried from ds_i and ds_{i+1} as explained. Otherwise, i.e., if no Data Point in ds_{i+1} matches the 2360 Data Point in dsi, NULL values are given to Measures and Attributes coming only from dsi+1. Symmetrically, if no Data Point in dsi matches the Data Point in dsi+1, NULL values are given to Measures and Attributes 2361 coming only from dsi. The constraints described above guarantee the absence of NULL values on the 2362 2363 Identifier Components. As mentioned, the **using** clause is not allowed in this case.
- **cross** join: the join is performed stepwise, between consecutive pairs of input Data Sets, starting from the 2364 2365 left side and proceeding toward the right side. No match is performed but the Cartesian product of the input 2366 Data Points is generated in output. These stepwise operations are associative. More formally, consider the ordered pair <ds_i, ds_{i+1}>, where ds_i is the result of the cross_ join of the first "i" operands and ds_{i+1} is the 2367 2368 i+1-th operand. For each pair $\langle ds_{i}, ds_{i+1} \rangle$, the resulting Data Set is fed with the Data Points obtained as the Cartesian product between the Data Points of ds_i and ds_{i+1} . The resulting Data Set will have all the 2369 2370 Components from ds_i and ds_{i+1} . For the Data Sets which have at least one Component in common, the alias 2371 parameter is mandatory. As mentioned, the **using** parameter is not allowed in this case. 2372
- 2373 The **semantics of the clauses** is the following.

2374

2375

- **filter** takes as input a Boolean Component expression (having type *component<boolean>*). This clause filters in or out the input Data Points; when the expression is TRUE the Data Point is kept, otherwise it is not kept in the result. Only one **filter** clause is allowed.
- **apply** combines the homonym Measures in the source operands whose type is compatible with the 2377 operators used in applyExpr, generating homonym Measures in the ouput. The expression applyExpr 2378 2379 can use as input the names or aliases of the operand Data Sets. It applies the expression to all the n-uples 2380 of homonym Measures in the input Data Sets producing in the target a single homonym Measure for 2381 each n-uple. It can be thought of as the multi-measure version of the **calc**. For example, if the following aliases have been declared: d1, d2, d3, then the following expression d1+d2+d3, sums all the homonym 2382 2383 Measures in the three input Data Sets, say M1 and M2, so as to obtain in the result: M1 := d1#M1 +d2#M1 + d3#M1 and M2 := d1#M2 + d2#M2 + d3#M2. It is not only a compact version of a multiple 2384 2385 **calc**, but also essential when the number of Measures in the input operands is not known beforehand. 2386 Only one **apply** clause is allowed.
- 2387 • **calc** calculates new Identifier, Measure or Attribute Components on the basis of sub-expressions at Component level. Each Component is calculated through an independent sub-expression. It is possible 2388 2389 to specify the role of the calculated Component among measure, identifier, attribute, or viral attribute, therefore the calc clause can be used also to change the role of a Component when possible. 2390 2391 The keyword **viral** allows controlling the virality of Attributes (for the Attribute propagation rule see the 2392 User Manual). The following rule is used when the role is omitted: if the component exists in the 2393 operand Data Set then it maintains that role; if the component does not exist in the operand Data Set 2394 then the role is **measure**. The calcExpr are independent one another, they can only reference

2395Components of the input Virtual Data Set and cannot use Components generated, for example, by other2396calcExpr . If the calculated Component is a new Component, it is added to the output virtual Data Set. If2397the Calculated component is a Measure or an Attribute that already exists in the input virtual Data Set,2398the calculated values overwrite the original values. If the Calculated component is an Identifier that2399already exists in the input virtual Data Set, an exception is raised because overwriting an Identifier2400Component is forbidden for preserving the functional behaviour. Analytic operators can be used in the2401calc

- aggr calculates aggregations of dependent Components (Measures or Attributes) on the basis of sub-2402 2403 expressions at Component level. Each Component is calculated through an independent sub-expression. 2404 It is possible to specify the role of the calculated Component among **measure**, **identifier**, **attribute**, or 2405 viral attribute. The substring viral allows to control the virality of Attributes, if the Attribute 2406 propagation rule is adopted (see the User Manual). The **aggr** sub-expressions are independent of one 2407 another, they can only reference Components of the input Virtual Data Set and cannot use Components 2408 generated, for example, by other **aggr** sub-expressions. The **aggr** computed Measures and Attributes are the only Measures and Attributes returned in the output virtual Data Set (plus the possible viral 2409 2410 Attributes, see below Attribute propagation). The sub-expressions must contain only Aggregate 2411 operators, which are able to compute an aggregated Value relevant to a group of Data Points. The groups 2412 of Data Points to be aggregated are specified through the groupingClause, which allows the following 2413 alternative options.
- 2414group bythe Data Points are grouped by the values of the specified Identifier. The Identifiers not
specified are dropped in the result.

2416

2417

2418

2419

2420

2421

2422 2423

- **group except** the Data Points are grouped by the values of the Identifiers not specified in the clause. The specified Identifiers are dropped in the result.
 - **group all** converts an Identifier Component using conversionExpr and keeps all the resulting Identifiers.

The **having** clause is used to filter groups in the result by means of an aggregate condition evaluated on the single groups, for example the minimum number of rows in the group.

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the clause returns a Data Set that contains a single Data Point and has no Identifier Components.

- **keep** maintains in the output only the specified dependent Components (Measures and Attributes) of the input virtual Data Set and drops the non-specified ones. It has the role of a projection in the usual relational semantics (specifying which columns have to be projected in). Only one **keep** clause is allowed. If **keep** is used, **drop** must be omitted.
- drop maintains in the output only the non-specified dependent Components (Measures and Attributes)
 of the input virtual Data Set (component<scalar>) and drops the specified ones. It has the role of a
 projection in the usual relational join semantics (specifying which columns will be projected out). Only
 one drop clause is allowed. If drop is used, keep must be omitted.
- rename assigns new names to one or more Components (Identifier, Measure or Attribute Components).
 The resulting Data Set, after renaming all the specified Components, must have unique names of all its Components (otherwise a runtime error is raised). Only the Component name is changed and not the Component Values, therefore the new Component must be defined on the same Value Domain and Value Domain Subset as the original Component (see also the IM in the User Manual). If the name of a Component defined on a different Value Domain or Set is assigned, an error is raised. In other words, rename is a transformation of the variable without any change in its values.
- The semantics of the **Attribute propagation** in the join is the following. The Attributes calculated through the calc or **aggr** clauses are maintained unchanged. For all the other Attributes that are defined as **viral**, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule section in the User Manual). This is done before the application of the **drop**, **keep** and **rename** clauses, which acts also on the Attributes resulting from the propagation.
- 2444 The semantics of the **final automatic aliases** removal is the following. After the application of all the clauses, the 2445 structure of the final virtual Data Set is further modified. All the Components of the form 2446 "alias#component_name" "dataset_name#component_name") are (or implicitly renamed into 2447 "component name". This means that the prefixes in the Component names are automatically removed. It is 2448 responsibility of the user to guarantee the absence of duplicated Component names once the prefixes are removed. In other words, the user must ensure that there are no pairs of Components whose names are of the 2449 2450 form "alias1#c1" and "alias2#c1" in the structure of the virtual Data Point, since the removal of "alias1" and 2451 "alias2" would cause the clash. If, after the aliases removal two Components have the same name, an error is 2452 raised. In particular, name conflicts may derive if the using clause is present and some homonym Identifier 2453 Components do not appear in it; these components should be properly renamed because cannot be removed; the

input Data Set have homonym Measures and there is no apply clause which unifies them; these Measures can be renamed or removed.

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1						
ld_1	ld_2	Me_1	Me_2			
1	А	А	В			
1	В	С	D			
2	А	E	F			

DS_2						
ld_1	ld_2	Me_1A	Me_2			
1	А	В	Q			
1	В	S	Т			
3	А	Z	М			

Example 1:

2467	
------	--

DS_r := inner_join (DS_1 as d1, DS_2 as d2	
keep Me_1, d2#Me_2, Me_1A)	

DS_r				
ld_1	ld_2	Me_1	Me_2	Me_1A
1	А	А	Q	В
1	В	С	Т	S

results in:

results in:

Example 2:

$DS_r := left_join (DS_1 as d1, DS_2 as d2)$	
keep Me_1, d2#Me_2, Me_1A)	results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	Me_1A
1	А	А	Q	В
1	В	С	т	S
2	А	E	null	null

Example 3:

DS_r	:= full_join (DS_1 as d1, DS_2 as d2
	keep Me_1, d2#Me_2, Me_1A)

keep Me_1, d2#Me_2, Me_1A)

DS_r				
ld_1	ld_2	Me_1	Me_2	Me_1A
1	А	А	Q	В
1	В	С	Т	S
2	А	E	null	null

	3		А	null		М		Z	
<i>Example 4:</i> DS_r := cross_join (DS_1 as d1, DS_2 as d2 rename d1#ld_1 to ld11, d1#ld_2 to ld12, d2#ld1 to ld21, d2#ld2 to ld22, d1#Mo to Me12)									
	to Me12) results in:								
		DS_r							
		ld_11	ld_12	ld_21	ld_22	Me_1	Me12	Me_1A	Me_2
		1	А	1	А	А	В	В	Q
		1	А	1	В	А	В	S	Т
		1	А	3	А	А	В	Z	М
		1	В	1	А	C	D	В	Q
		1	В	1	В	С	D	S	Т
		1	В	3	А	С	D	Z	М
		2	A	1	А	E	F	В	Q
		2	A	1	В	E	F	S	Т
		2	Α	3	А	E	F	Z	М
			filtor Mo	n (DS_1 as 1 – "^"	s d1, DS	_2 as d2			
			filter Me_ [_] calc Me_4 drop d1#N	1 = "A" 1 = Me_1	Me_1A		J	results in:	
	DS_r		filter Me_ [_] calc Me_4 drop d1#N	1 = "A" 4 = Me_1 ⁄Ie_2)	Me_1A			results in:	
	DS_r Id_1		filter Me_ calc Me_4 drop d1#N where is	1 = "A" 4 = Me_1 ⁄Ie_2)	Me_1A			results in: Me_1A	Me
			filter Me_ calc Me_4 drop d1#N where is	1 = "A" 4 = Me_1 Me_2) s the string	Me_1A	nation,			Me A
Examp	ld_1	Id_2 A DS_r :=	filter Me_ calc Me_4 drop d1#M where is where is calc Me_2 filter Id_2 keep Me_	1 = "A" 1 = Me_1 Me_2) s the string Me_1 A n (DS_1 2 := Me_2 ="B"	Me_1A concater	Me_2 Q		Me_1A	
Examp	ld_1 1 ble 6:	Id_2 A DS_r :=	filter Me_' calc Me_4 drop d1#M where is : inner_join calc Me_2 filter Id_2 keep Me_ where is	1 = "A" 1 = Me_1 Me_2) s the string Me_1 A n (DS_1 2 := Me_2 ="B" 1, Me_2)	Me_1A concater	mation, Me_2 Q		Me_1A B	
Examp	Id_1 1	Id_2 A DS_r :=	filter Me_ calc Me_4 drop d1#M where is where is calc Me_2 filter Id_2 keep Me_	1 = "A" 1 = Me_1 Me_2) s the string Me_1 A n (DS_1 2 := Me_2 ="B" 1, Me_2)	Me_1A concater	mation, Me_2 Q		Ме_1А В	

Example 7: Given the operand Data Sets DS_1 and DS_2:

DS_1			
ld_1	ld_2	Me_1	Me_2
1	А	А	В
1	В	С	D
2	А	E	F

DS_2			
ld_1	ld_2	Me_1	Me_2
1	А	В	Q
1	В	S	Т
3	А	Z	Μ

DS_r			
ld_1	ld_2	Me_1	Me_2
1	А	AB	BQ
1	В	CS	DT

2520 VTL-ML - String operators

2522	
2523 Syntax	
2524 op1 op2	
2525	
2526 Input Parameters	
2527op1, op2the operands2528	
2529 Examples of valid syntaxes	
2530 "Hello" ", world!"	
2531 ds_1 ds_2	
2532	
2533 Semantics for scalar operations	
2534 Concatenates two strings. For example, "Hello" ", world!	" gives "Hello, world!"
2535	
2536 Input parameters type	
2537 op1, op2 :: dataset { measure <string> _+ }</string>	
2538 component <string></string>	
2539 string	
2540	
2541 Result type	
2542 result :: dataset { measure <string> _+ }</string>	
2543 component <string></string>	
2544 string	
2545	
2546 Additional constraints	
2547 None. 2548	
2549 Behaviour	

The operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set
Components" (see the section "Typical behaviours of the ML Operators").

Examples

2555

2553

DS_1			
ld_1	ld_2	Me_1	
1	А	"hello"	
2	В	"hi"	

2556 2557

DS_2			
ld_1	ld_2	Me_1	
1	А	"world"	
2	В	"there"	

2558 2559

Example 1: $DS_r := DS_1 \parallel DS_2$ results in:

Given the Data_Sets DS_1 and DS_2:

DS_r			
ld_1	ld_2	Me_1	
1	А	"helloworld"	
2	В	"hithere"	

in: 1

"hi world"

	<pre>Example 2 (on component): DS_r :=</pre>	DS_1[calc Me_2:=	Me_1 " world"]	results
--	--	------------------	-------------------	---------

25	63	

2

В

DS_r			
ld_1	ld_2	Me_1	Me_2
1	А	"hello"	"hello world"

"hi"

Whitespace removal : trim, rtrim, ltrim 2564

2565 **Syntax** 2566 {trim|ltrim|rtrim}¹ (op) 2567 Input parameters 2568 2569 ор the operand 2570 2571 Examples of valid syntaxes 2572 trim("Hello ") trim(ds_1) 2573 2574 2575 Semantics for scalar operations Removes trailing or/and leading whitespace from a string. For example, trim("Hello") gives "Hello". 2576 2577 2578 *Input parameters type* 2579 op :: dataset { measure<string> _+ } | component<string> 2580 2581 | string 2582 2583 Result type result :: dataset { measure<string> _+ } 2584 2585 | component<string> 2586 | string 2587 Additional constraints 2588 2589 None. 2590 **Behaviour** 2591 The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set 2592 2593 Component" (see the section "Typical behaviours of the ML Operators"). 2594 2595 **Examples** 2596 2597 Given the Data Set DS_1: 2598 DS 1 ld_1 Id_2 Me_1

2599

1

2

А

В

"hello

"hi

п

"

2600	<pre>Example 1: DS_r := rtrim(DS_1)</pre>	results in:

DS_r			
ld_1	ld_2	Me_1	
1	А	"hello"	
2	В	"hi"	

2602

Example 2 (on component): DS_r := DS_1[calc Me_2:= rtrim(Me_1)] results in:

2604

DS_r			
ld_1	ld_2	Me_1	Me_2
1	А	"hello "	"hello"
2	В	"hi "	"hi"

2605 Character case conversion :

upper/lower

2606 2607 2608	<i>Syntax</i> {up	oper lower}1 (op)
2609	Input Pe	arameters
2610	ор	the operand
2611	-1-	
2612	Exampl	es of valid syntaxes
2613	upper("	
2614	lower(d	,
2615	,	_ ,
2616	Semant	ics for scalar operations
2617	Convert	ts the character case of a string in upper or lower case. For example, upper("Hello") gives "HELLO".
2618		
2619	Input Po	arameters type
2620	op ::	dataset { measure <string> _+ }</string>
2621		component <string></string>
2622		string
2623		
2624	Result t	ype
2625	result ::	dataset { measure <string> _+ }</string>
2626		component <string></string>
2627		string
2628		
2629	Additio	nal constraints
2630	None.	
2631		

2632 *Behaviour*

The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set
Component" (see the section "Typical behaviours of the ML Operators").

Examples

Given the Data Set DS_1:

2637 2638

DS_1		
ld_1	Id_2	Me_1
1	А	"hello"
2	В	"hi"

```
2639
```

```
2640
```

Example 1: DS_r := upper(DS_1) results in:

+1			
	БС	r	

DS_r		
ld_1	ld_2	Me_1
1	А	"HELLO"
2	В	"HI"

2642 2643

Example 2 (on component): DS_r := DS_1[calc Me_2:= upper(Me_1)] results in:

2644

DS_R			
ld_1	ld_2	Me_1	Me_2
1	А	"hello"	"HELLO"
2	В	"hi"	"HI"

2645

Sub-string extraction : substr 2646

2647 2648	Syntax sub	ostríon	, start, length)		
2649	Jun		, start, iongin j		
2650					
2650	Input po	arameter	2		
2651		the oper			
2653		-	ting digit (first character) of the string	to be extra	acted
2654			th (number of characters) of the string		
2655				,	
2656	Example	es of valid	l syntaxes		
2657		(DS_1,			
2658		(DS_1,			
2659		(DS_1,			
2660	substr	(DS_1)			
2661					
2662	Semanti	ics for sco	lar operations		
2663	The ope	erator ex	stracts a substring from op, which n	nust be <i>str</i>	ring type. The substring starts from the startth
2664	characte	er of the	input string and has a number of chara	acters equa	al to the length parameter.
2665			s omitted, the substring starts from the		
2666	•	If length	is omitted or overcomes the length o	f the input	string, the substring ends at the end of the input
2667		string.			
2668	•	If start is	s greater than the length of the input s	tring, an ei	mpty string is extracted.
2669				-	
2670	For exam	nple:			
2671	substr ("abcdefg	yhijklmnopqrstuvwxyz", 5 , 10)	gives:	"efghijklmn".
2672			hijklmnopqrstuvwxyz", 25 , 10)	gives:	
2673	substr ("abcdefg	ghijklmnopqrstuvwxyz", 30 , 10)		gives: "".
2674					
2675		arameter.			
2676	op ::		<pre>dataset { measure <string> _+ }</string></pre>		
2677			component <string></string>		
2678			string		
2679					
2680	start ::		<pre>component < integer [value >= 1] ></pre>		
2681			integer [value >= 1]		
2682					
2683					

component < integer [value >= 0] > 2684 length :: integer [value >= 0] 2685 2686 2687 2688 2689 Result type result :: dataset { measure<string> _+ } 2690 2691 | component<string> 2692 | string 2693 Additional constraints 2694 2695 None.

2697 Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component", as for the invocations at Component or Scalar level, the operator has the behaviour of the "Operators applicable on more than two Scalar Values or Data Set Components", (see the section "Typical behaviours of the ML Operators").

results in:

results in:

Examples

Given the operand Data Set DS_1:

2705 2706

2702 2703

2704

2696

DS_1			
ld_1	ld_2	Me_1	Me_2
1	A	"hello world"	"medium size text"
1	В	"abcdefghilmno"	"short text"
2	А	"pqrstuvwxyz"	"this is a long description"

 $DS_r:=$ substr (DS_1 , 7)

 $DS_r:=$ substr (DS_1 , 1, 5)

2707

2708 2709

Example 1:	

DS_r					
ld_1	ld_2	Me_1	Me_2		
1	А	"world"	" size text"		
1	В	"ghilmno"	"text"		
2	А	"vwxyz"	"s a long description"		

2710

2711 Example 2: 2712

DS_r					
ld_1	ld_2	Me_1	Me_2		
1	А	"hello"	"mediu"		
1	В	"abcde"	"short"		
2	А	"pqrst"	"this "		

2713 2714

2715

Example3(on Components): DS_r:= DS_1 [calc Me_2:= substr (Me_2 , 1 , 5)]

results in:

DS_r			
ld_1	ld_2	Me_1	Me_2
1	А	"hello world"	"mediu"
1	В	"abcdefghilmno"	"short"

	2	А	"pqrstuvwxyz"	"this "	
S	String pa	ttern rep	lacement: repla	ce	
c	'yntax	-	-		
5		e (op , pattern ²	nattern?)		
	replac	e (op , pattern			
Ь	nput paramete	rc			
		operand			
		pattern to be r	enlaced		
		replacing patte	•		
1-					
E	Examples of val	id syntaxes			
	eplace(DS_1,				
re	eplace(DS_1,	"Hello")			
		calar operations			
			of a specified string-pattern ((pattern2). If pattern2 is
0	mitted then al	l occurrences o	f pattern1 are removed. For e	xample:	
		world", "Hello"			
		world", "Hello")			
re	eplace ("Hello	", "ello", "i")	gives "Hi"		
	nput paramete				
0	p ::		et { measure <string> _+ }</string>		
		•	nponent <string></string>		
-	ottorn1 notto	stri	-		
p	attern1, patte	-	onent <string></string>		
		stri	ng		
D	Result type				
	esult ::	dataset ∫me	asure <string> _+ }</string>		
16	esuit ::	component	e ,		
		string	<sump></sump>		
		string			
A	dditional cons	traints			
	lone.				
11					
B	Behaviour				
		ations at Data S	Set level, the operator has the	behaviour of the "Operators	s applicable on one Scalar
			Component", as for the invoc		
tl	he behaviour o	of the "Operato	rs applicable on more than t	wo Scalar Values or Data S	et Components", (see the

section "Typical behaviours of the ML Operators").

Examples Given the Data_ Set DS_1:

DS_1					
ld_1	Id_2	Me_1			
1	А	"hello world"			
2	А	"say hello"			
3	А	"he"			
4	А	"hello!"			

DS_r		
ld_1	ld_2	Me_1
1	А	"hi world"
2	А	"say hi"
3	А	"he"
4	А	"hi! "

2766

2767

DS_r							
ld_1	Id_2	Me_1	Me_2				
1	А	" hello world"	"hi world"				
2	А	" say hello"	"say hi"				
3	А	"he"	"he"				
4	А	"hello! "	"hi! "				

results in:

Example 2 (on component): DS_r := DS_1[calc Me_2:= replace (Me_1,"ello","i")]

2768

2772 2773

2769 String pattern location : instr

2770 2771 *Syntax*

instr (op, pattern, start, occurrence)

2774	
2775	Input parameters

2775	Input paramet	ters		
2776	ор	the operand		
2777	pattern	the string-pattern to l	be searche	ed
2778	start	the position in the inp	out string o	of the character from which the search starts
2779	occurrence	the occurrence of the	pattern to	o search
2780				
2781	Examples of vo	alid syntaxes		
2782	instr (DS_1,			
2783	instr (DS_1,			
2784	instr (DS_1,	"ab", _ , 2)		
2785	instr (DS_1,	"ab")		
2786				
2787		scalar operations		
2788				string of a specified string (pattern). The search starts from the
2789	start th charact	er of the input string an	d finds th	ne n th occurrence of the pattern, returning the position of its first
2790	character.			
2791	 If star 	rt is omitted, the search s	starts from	n the 1 st position.
2792	 If ntho 	occurrence is omitted, th	e value is	1.
2793	If the n th occur	rence of the string-patt	ern after t	the start th character is not found in the input string, the returned
2794	value is 0.			
2795				
2796	For example:			
2797	instr ("abcde"	, "C")	gives	3
2798	instr ("abcdec	:frxcwsd", "c", _ , 3)	gives	10
2799	instr ("abcdec	frxcwsd", "c", 5 , 3)	gives	0
2800				
2801	Input paramet	ters type		

2763 *Example 1:* DS_r := replace (ds_1,"ello","i") results in: 2764

2802	op ::	<pre>dataset { measure<string> _ }</string></pre>
2803		component <string></string>
2804		string
2805	pattern ::	component <string></string>
2806		string
2807	start ::	component < integer [value >= 1] >
2808		integer [value >= 1]
2809	occurrence ::	component < integer [value >= 1] >
2810		integer [value >= 1]
2811		
2812	Result type	
2813	result ::	<pre>dataset { measure<integer[value>= 0]> int_var }</integer[value></pre>
2814		component <integer[value>= 0]></integer[value>
2815		integer[value >= 0]
2816		
2817	Additional const	traints

2818 For operations at Data Set level, the input Data Set must have exactly one *string* type Measure.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component", as for the invocations at Component or Scalar level, the operator has the behaviour of the "Operators applicable on more than two Scalar Values or Data Set Components", (see the section "Typical behaviours of the ML Operators").

2825 If op is a Data Set then **instr** returns a dataset with a single measure int_var of type *integer*.

2826 2827 Exa

2827 *Examples*2828 Given the Data Set DS_1:

Example 1:

2829

2819 2820

DS_1					
ld_1	ld_2	Me_1			
1	А	"hello world"			
2	А	"say hello"			
3	А	"he"			
4	A	"hi, hello! "			

2830 2831

DS_r:= instr(ds 1,"hello")

2832

DS_r					
ld_1	ld_2	int_var			
1	А	1			
2	А	5			
3	А	0			
4	А	5			

2833 2834

2835

-

Example 2 (on component): DS_r := DS_1[calc Me_2:=instr(Me_1,"hello")]

results in

results in:

DS_r						
ld_1	ld_2	Me_1	Me_2			
1	А	"hello world"	1			
2	А	"say hello"	5			
3	А	"he"	0			
4	А	"hi, hello!"	5			

```
2837
```


Given t	he Data	Set DS_	2:

DS_2			
ld_1	ld_2	Me_1	Me_2
1	А	"hello"	"world"
2	В	NULL	"hi"

DS r := DS 2 [calc Me 10:= instr(Me 1, "o"), Me 20:=instr(Me 2, "o")] results in:

ם – יי_	e_10.= msu	$(me_1, 0)$), IVIC_4	201130(10	€_∠,	UЛ	result

Example 3 (applying the instr operator at component level to a multi Measure Data Set):

DS_r					
ld_1	ld_2	Me_1	Me_2	Me_10	Me_20
1	А	"hello"	"world"	5	2
2	В	NULL	"hi"	null	0

Example 4 (applying the instr operator at Data Set level to a multi Measure Data Set):

DS_r := instr(DS_2, "o") would give error because DS_2 has more Measures.

String length : length

Syntax

```
length ( op )
2853
2854
2855
        Input Parameters
               the operand
2856
        ор
```

Examples of valid syntaxes

length("Hello, World!")

```
length(DS_1)
2860
2861
```

Semantics for scalar operations Returns the length of a string. For example, length("Hello, World!") gives 13 For the empty string "" the value 0 is returned

```
2865
2866
        Input Parameters type
```

2867	op ::	<pre>dataset { measure<string> _ }</string></pre>
2868		component <string></string>
2869		string
2870		
2871	Result type	
2872	result ::	<pre>dataset { measure<integer[value>= 0]> int_var }</integer[value></pre>
2873		<pre>component<integer[value>= 0]></integer[value></pre>
2874		<pre>integer[value >= 0]</pre>
2875		
2876	Additional cons	straints

For operations at Data Set level, the input Data Set must have exactly one *string* type Measure.

Behaviour

- The operator has the behaviour of the "Operators changing the data type" (see the section "Typical behaviours of
- the ML Operators").
- If op is a Data Set then **length** returns a dataset with a single measure int_var of type *integer*.

Examples

Given the Data Set DS_1

DS_1					
ld_1	ld_2	Me_1			
1	А	"hello"			
2	В	null			

Example 1: DS_r := length(DS_1) results in:

DS_r					
ld_1	ld_2	int_var			
1	А	5			
2	В	null			

Given the Data Set DS_2:

Example 2 (on component): DS_r:= DS_1[calc Me_2:=length(Me_1)] results in

_	~	~	-	
\mathbf{a}	o	C	14	
-	О	5	4	

DS_r					
ld_1	ld_2	Me_1	Me_2		
1	А	"hello"	5		
2	В	null	null		

DS_2					
ld_1	ld_2	Me_1	Me_2		
1	А	"hello"	"world"		
2	В	null	"hi"		

Example 3 (applying the length operator at component level to a multi Measure Data Set):

DS_r := DS_2 [calc Me_10:= length(Me_1), Me_20:=length(Me_2)] results in:

DS_r						
ld_1	ld_2	Me_1	Me_2	Me_10	Me_20	
1	А	"hello"	"world"	5	5	
2	В	null	"hi"	null	2	

Example 4 (length operator applied at Data Set level to a multi Measure Data Set):

DS_r := length(DS_2) would give error because DS_2 has more Measures.

2907 VTL-ML - Numeric operators

2908	Unary plus : +
2909	Syntax
2910	+ op
2911	
2912	Input parameters
2913	op the operand
2914	
2915	Examples of valid syntaxes
2916	+ DS_1
2917	+ 3
2918	
2919	Semantics for scalar operations
2920	The operator + returns the operand unchanged. For example:
2921	+ 3 gives 3
2922	+ (- 5) gives - 5
2923	
2924	Input Parameters type
2925	op :: dataset { measure <number> _+ }</number>
2926	component <number></number>
2927	number
2928	
2929	Result type
2930	result :: dataset { measure <number> _+ }</number>
2931	component <number></number>
2932	number
2933	
2934	Additional constraints
2935	None.
2936	
2937	Behaviour
2938	The operator has the behaviour of the "Operators applicable on
2939	Component" (see the section "Typical behaviours of the ML Ope
2940	According to the general rules about data types, the operator of

erators"). can be applied also on sub-types of *number*, that is

2941 the type *integer*. If the type of the operand is *integer* then the result has type *integer*. If the type of the operand is 2942 number then the result has type number. 2943

Examples 2944

Given the operand Data Set DS_1: 2945

2946

DS_1					
ld_1	ld_2	Me_1	Me_2		
10	А	1.0	5		
10	В	2.3	10		
11	А	3.2	12		

2947 2948

2949

DS_r := + DS_1 Example 1:

results in:

one Scalar Value or Data Set or Data Set

DS_r					
ld_1	ld_2	Me_1	Me_2		
10	А	1.0	5		

10	В	2.3	10
11	А	3.2	12

Example 2 (on components):

 $DS_r := DS_1 [calc Me_3 := + Me_1]$

results in:

DS_r				
ld_1	Id_2	Me_1	Me_2	Me_3
10	А	1.0	5	1.0
10	В	2.3	10	2.3
11	А	3.2	12	3.2

Unary minus: 2953

Syntax - op Input parameters the operand ор *Examples of valid syntaxes* - DS_1 - 3 Semantics for scalar operations 4 The operator - inverts the sign of op. For example: - 3 gives - 3 -(-5) gives 5 Input Parameters type op :: dataset { measure<number> _+ }) | component<number> | number Result type dataset { measure<number> _+ } result :: component<number> L | number Additional constraints None.) **Behaviour** 2982 The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set 2983

- Component" (see the section "Typical behaviours of the ML Operators"). 2984
- According to the general rules about data types, the operator can be applied also on sub-types of number, that is 2985 2986 the type *integer*. If the type of the operand is *integer* then the result has type *integer*. If the type of the operand is 2987 *number* then the result has type *number*. 2988

2989 **Examples**

Given the operand Data Set DS_1: 2990

DS_1			
ld_1	ld_2	Me_1	Me_2
10	А	1	5.0

-		Č	Č
2	9	5	4
2	9	5	5
2	9	5	6
2	9	5	7
2	9	5	8
2	9	5	9
		6	
		6	
		6	
		6	
		6	
		6	
		6	
		6	
		6	
		6	
		7	
		7	
		7	
		7	
		7	
		7	
		7	
		7	
		7	
		7	
		8	
		8 8	

		10	В	2	10.0	
		11	А	3	12.0	
2992 2993 2994	E	xample 1:		DS_r := - DS	_1	results in:
		DS_r				
		ld_1	ld_2	Me_1	Me_2	
		10	А	-1	-5.0	
		10	В	-2	-10.0	
						1

2997

Example 2 (on components):

А

11

 $DS_r := DS_1 [calc Me_3 := - Me_1]$

-12.0

results in:

DS_r						
ld_1	ld_2	Me_1	Me_2	Me_3		
10	А	1	5.0	-1		
10	В	2	10.0	-2		
11	А	3	12.0	-3		

-3

2998 2999

Addition : 3000 Syntax 3001 3002 op1 + op2 3003 3004 *Input parameters* the first addendum 3005 op1 the second addendum 3006 op2 3007 3008 Examples of valid syntaxes DS_1 + DS_2 3009 3010 3 + 5 3011 3012 Semantics for scalar operations The operator addition returns the sum of two numbers. For example: 3013 3 + 5 3014 gives 8 3015 3016 *Input parameters type* op1, op2 :: dataset { measure<number> _+ } 3017 | component<number> 3018 | number 3019 3020 3021 Result type

3029 *Behaviour*

- 3030 The operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set
- 3031 Components" (see the section "Typical behaviours of the ML Operators").
- 3032 According to the general rules about data types, the operator can be applied also on sub-types of *number*, that is
- 3033 the type *integer*. If the type of both operands is *integer* then the result has type *integer*. If one of the operands is
- 3034 of type *number*, then the other operand is implicitly cast to *number* and therefore the result has type *number*.
- 3035 3036 Exan

036 Examples

3037 Given the operand Data Sets DS_1 and DS_2:

3038

DS_1			
ld_1	ld_2	Me_1	Me_2
10	А	5	5.0
10	В	2	10.5
11	А	3	12.2
11	В	4	20.3

3039

DS_2					
ld_1	ld_2	Me_1	Me_2		
10	А	10	3.0		
10	С	11	6.2		
11	В	6	7.0		

3040 3041

Example 1:

Example 2:

 $DS_r := DS_1 + DS_2$

3042

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	15	8.0
11	В	10	27.3

3043 3044

DS_r := DS_1 + 3

results in:

results in:

3045

DS_r					
ld_1	ld_2	Me_1	Me_2		
10	А	8	8.0		
10	В	5	13.5		
11	А	6	15.2		
11	В	7	23.3		

3046

Example 3 (on components):	DS_r := DS_1 [calc Me_3 := Me_1 + 3.0]	results in:
----------------------------	--	-------------

DS_r						
ld_1	ld_2	Me_1	Me_2	Me_3		
10	А	5	5.0	8.0		
10	В	2	10.5	5.0		
11	А	3	12.2	6.0		
11	В	4	20.3	7.0		

3049	Subt	raction	-
3050	Syntax		
3051		op1 - op2	
3052			
3053		arameters	
3054	op1	the minuend	
3055	op2	the subtrahe	nd
3056			
3057		les of valid syn	taxes
3058	DS_1 -	DS_2	
3059	3 - 5		
3060	C	· C11	
3061 3062		tics for scalar of	
3062 3063	The op	3 - 5 gives	tion returns the difference of two numbers. For example:
3063 3064		5-5 gives	- 2
3064 3065	Innut P	arameters typ	0
3066	op1, o	P 1	taset { measure <number> _+ }</number>
3067	001,0		mponent <number></number>
3068			imber
3069		1	
3070	Result t	vpe	
3071	result :		taset { measure <number> _+ }</number>
3072			mponent <number></number>
3073			umber
3074			
3075	Additio	nal constraints	5
3076	None.		
3077			
3078	Behavio	our	

The operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set 3079 Components" (see the section "Typical behaviours of the ML Operators"). 3080

3081 According to the general rules about data types, the operator can be applied also on sub-types of *number*, that is 3082 the type integer. If the type of both operands is integer then the result has type integer. If one of the operands is

of type *number*, then the other operand is implicitly cast to *number* and therefore the result has type *number*. 3083 3084

3085 **Examples**

Given the operand Data Sets DS_1 and DS_2: 3086

> DS 1 ld_1 ld_2 Me_1 Me_2 10 А 5.0 5 10 В 2 10.5 11 3 12.2 А 11 В 4 20.3

3088

3087

DS_2	DS_2					
ld_1	ld_2	Me_1	Me_2			
10	А	10	3.0			
10	С	11	6.2			
11	В	6	7.0			

3089 3090

 $DS_r := DS_1 - DS_2$ Example 1: results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	-5	2.0	
11	В	-2	13.3	

Example 2:

DS_r := DS_1 - 3

results in:

3094

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	2	2.0	
10	В	-1	7.5	
11	А	0	9.2	
11	В	1	17.3	

3095 3096 3097

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 - 3]

results in:

DS_r					
ld_1	ld_2	Me_1	Me_2	Me_3	
10	А	5	5.0	2	
10	В	2	10.5	-1	
11	А	3	12.2	0	
11	В	4	20.3	1	

*

3098

3099 Multiplication :

3100	Syntax
3101	op1 * op2
3102	
3103	Input parameters
3104	op1 the multiplicand
3105	op2 the multiplier
3106	
3107	Examples of valid syntaxes
3108	DS_1 * DS_2
3109	3 * 5
3110	
3111	Semantics for scalar operations
3112	The operator multiplication returns the product of two numbers. For example:
3113	3 * 5 gives 15
3114	
3115	Input parameters type
3116	op1, op2 :: dataset { measure <number> _+ }</number>
3117	<pre>component<number></number></pre>
3118	number
3119	
3120	Result type
3121	result :: dataset { measure <number> _+ }</number>
3122	<pre>component<number></number></pre>
3123	number
3124	

3125 Additional constraints

- 3126 None.
- 3127

3128 Behaviour

The operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set Components" (see the section "Typical behaviours of the ML Operators").

According to the general rules about data types, the operator can be applied also on sub-types of *number*, that is

the type *integer*. If the type of both operands is *integer* then the result has type *integer*. If one of the operands is

3133 of type *number*, then the other operand is implicitly cast to *number* and therefore the result has type *number*.

3134

3135 Examples

Given the operand Data Sets DS_1 and DS_2:

3137

DS_1				
ld_1	ld_2	Me_1	Me_2	
10	А	100	7.6	
10	В	10	12.3	
11	А	20	25.0	
11	В	2	20.0	

3138

DS_2				
ld_1	ld_2	Me_1	Me_2	
10	А	1	2.0	
10	С	5	3.0	
11	В	2	1.0	

3139

3140 *Example 1*:

3141

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	100	15.2	
11	В	4	20.0	

DS_r := DS_1 * -3

 $DS_r := DS_1 * DS_2$

results in:

results in:

3142

3143 3144 Example 2:

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	-300	-22.8	
10	В	-30	-36.9	
11	А	-60	-75.0	
11	В	-6	-60.0	

3145 3146

3147 Example 3 (on components): $DS_r := DS_1 [calc Me_3 := Me_1 * Me_2]$ results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	Me_3
10	А	100	7.6	760.0
10	В	10	12.3	123.0
11	А	20	25.0	500.0
11	В	2	20.0	40.0

3150	Division	•	/
		•	_

3151	Syntax
3152	op1 / op2
3153	
3154	Input parameters
3155	op1 the dividend
3156	op2 the divisor
3157	
3158	Examples of valid syntaxes
3159	DS_1 / DS_2
3160	3 / 5
3161	
3162	Semantics for scalar operations
3163	The operator division divides two numbers. For example:
3164	3 / 5 gives 0.6
3165	
3166	Input parameters type
3167	op1, op2 :: dataset { measure <number> _+ }</number>
3168	component <number></number>
3169	number
3170	
3171	Result type
3172	result :: dataset { measure <number> _+ }</number>
3173	component <number></number>
3174	number
3175	
3176	Additional constraints
3177	None.
3178	
3179	Behaviour
3180	The operator has the behaviour of the "Operators applic
2101	Components" (as the section "Typical behaviours of the

- blicable on two Scalar Values or Data Sets or Data Set 3181
- Components" (see the section "Typical behaviours of the ML Operators"). According to the general rules about data types, the operator can be applied also on sub-types of *number*, that is 3182 the type *integer*. The result has type *number*. 3183
- If op2 is 0 then the operation generates a run-time error. 3184

3186 Examples

Given the operand Data Sets DS_1 and DS_2: 3187

3188

DS_1				
ld_1	ld_2	Me_1	Me_2	
10	А	100	7.6	
10	В	10	12.3	

11	А	20	25.0
11	В	10	12.3

DS_2					
ld_1	ld_2	Me_1	Me_2		
10	А	1	2.0		
10	С	5	3.0		
11	В	2	1.0		

3190 3191

Example 1:

Example 2:

 $DS_r := DS_1 / DS_2$

 $DS_r := DS_1 / 10$

results in:

results in:

3192

DS_r					
ld_1	ld_2	Me_1	Me_2		
10	А	100	3.8		
11	В	10	25.0		

3193 3194

3174

3195

DS_r					
ld_1	ld_2	Me_1	Me_2		
10	А	10	0.76		
10	В	1	1.23		
11	А	2	2.5		
11	В	0.2	2.0		

3196

3197 3198

7 Example 3 (on components): $DS_r := DS_1 [calc Me_3 := Me_2 / Me_1]$

results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	Me_3
10	А	100	7.6	0.076
10	В	10	12.3	1.23
11	А	20	25.0	1.25
11	В	2	20.0	10.0

3199

3200 Modulo : mod

3201	Syntax	
3202	r	nod(op1, op2)
3203		
3204	Input para	ameters
3205	op1	the dividend
3206	op2	the divisor
3207		
3208	Examples	of valid syntaxes

3209 mod (DS_1, DS_2) 3210 mod (DS_1, 5) mod (5, DS_2) 3211 mod (5, 2) 3212 3213 3214 Semantics for scalar operations 3215 The operator **mod** returns the remainder of op1 divided by op2. It returns op1 if divisor op2 is 0. For example: 3216 mod (5,2) gives 1 mod (5, -2) gives -1 3217 mod (8,2) gives 0 3218 mod (9,0) 3219 gives 9 3220 3221 Input Parameters type 3222 op1, op2 :: dataset { measure<number> _+ } 3223 | component<number> | number 3224 divisor :: 3225 number 3226 3227 *Result type* dataset { measure<number>_+ } result :: 3228 3229 | component<number> 3230 | number 3231 3232 Additional constraints 3233 None. 3234 3235 **Behaviour** The operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set 3236 3237 Components" (see the section "Typical behaviours of the ML Operators"). 3238 According to the general rules about data types, the operator can be applied also on sub-types of number, that is the type integer. If the type of both operands is integer then the result has type integer. If one of the operands is 3239 of type *number*, then the other operand is implicitly cast to *number* and therefore the result has type *number*. 3240

3241

3242 Examples

3243 Given the operand Data Sets DS_1 and DS_2: 3244

DS_1					
ld_1	ld_2	Me_1	Me_2		
10	А	100	0.7545		
10	В	10	18.45		
11	А	20	1.87		
11	В	9	12.3		

3245

DS_2					
ld_1	ld_2	Me_1	Me_2		
10	А	1	0.25		
10	С	5	3.0		
11	В	2	2.0		

3246 3247

3248 *Example 1:* 3249

DS_r := mod (DS_1, DS_2)

results in:

DS_r					
ld_1	ld_2	Me_1	Me_2		
10	А	0	0.0045		
11	В	1	0.3		

Example 2: DS_r := mod (DS_1, 15)

3252

DS_r					
ld_1	ld_2	Me_1	Me_2		
10	А	10	0.7545		
10	В	10	3.45		
11	А	5	1.87		
11	В	9	12.3		

3253

3254 *Example 3 (on components)*: DS_r := DS_1[calc Me_3 := mod(DS_1#Me_1, 3.0)] results in: 3255

results in:

DS_r					
ld_1	ld_2	Me_1	Me_2	ME_3	
10	А	100	0.7545	1.0	
10	В	10	18.45	1.0	
11	А	20	1.87	2.0	
11	В	9	12.3	0.0	

3256

3270

3257 Rounding : round

3258 Syntax

3259 **round (** op , *numDigit* **)** 3260

3261 Input parameters
3262 op the operand
3263 numDigit the number of positions to round to

 3264

 3265
 Examples of valid syntaxes

 3266
 round (DS_1 , 2)

 3267
 round (DS_2)

- 3268 round (3.14159, 2) 3269 round (3.14159, _)
- 3271 Semantics for scalar operations

The operator **round** rounds the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the rouding happens at the left of the decimal point. The rounding operation leaves the numDigit position unchanged if the numDigit+1 position is between 0 and 4, otherwise it adds 1 to the number that is in the numDigit position. All the positions greater than numDigit are set to 0. The basic scalar type of the result is *integer* if numDigit is omitted, *number* otherwise.

3278 For example:

3279	round (3.14159,	2)	gives	3.14
3280	round (3.14159,	4)	gives	3.1416
3281	round (12345.6,	0)	gives	12346.0

3282	round (12345.6)	gives 12346
3283	round (12345.6, _)	gives 12346
3284	round (12345.6, -1)	gives 12350.0
3285			
3286	Input paramete	rs type	
3287	op1 ::	dataset { meas	ure <number> _+ }</number>
3288		component <n< td=""><td>umber></td></n<>	umber>
3289		number	
3290	numDigit::	component < in	iteger >
3291		integer	
3292			
3293	Result type		
3294	result ::	dataset { meas	ure <number> _+ }</number>
3295		component <n< td=""><td>umber></td></n<>	umber>
3296		number	
3297			
3298	Additional const	traints	
3299	None.		
3300			
3301	Behaviour		

As for the invocations at Data Set level, the operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component", as for the invocations at Component or Scalar level, the operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set Components", (see the section "Typical behaviours of the ML Operators").

3306 3307 *Examples*

3308 Given the operand Data Set DS_1:

3309

DS_1						
ld_1	ld_1	Me_1	Me_2			
10	А	7.5	5.9			
10	В	7.1	5.5			
11	А	36.2	17.7			
11	В	44.5	24.3			

3310 3311

Example 1:

 $DS_r := round(DS_1, 0)$

3312

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	8.0	6.0
10	В	7.0	6.0
11	А	36.0	18.0
11	В	45.0	24.0

3313

3314 Example 2 (on components):

11

А

3315

DS_r				
ld_1	ld_2	Me_1	Me_2	Me_10
10	A	7.5	5.9	8
10	В	7.1	5.5	7

36.2

17.7

36

results in:

DS_r := DS_1 [calc Me_10:= round(Me_1)] results in:

	11	В	44.5	24.3	45
3316					

3317 *Example 3 (on components) :* DS_r := DS_1 [calc Me_20:= round(Me_1 , -1)]

results in:

3317

DS_r					
ld_1	ld_2	Me_1	Me_2	Me_20	
10	А	7.5	5.9	10	
10	В	7.1	5.5	10	
11	А	36.2	17.7	40	
11	В	44.5	24.3	40	

3319

3320 Truncation : trunc

<pre>322 trunc (op , numDigit) 323 323 324 325 op the operand 326 numDigit the number of position from which to trunc 327 328 Examples of valid syntaxes 329 trunc (DS_1, 2) 330 trunc (3.14159, _ 2) 333 trunc (3.14159, _ 2) 333 334 Semantics for scalar operations 335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the 336 numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 337 happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 338 trunc (3.14159, 2) gives 3.14 339 for example: 330 trunc (3.14159, 2) gives 3.14 331 trunc (3.14159, 2) gives 3.14 332 trunc (3.14159, 2) gives 3.14 333 trunc (1.2345.6) gives 12345 334 trunc (1.2345.6, -) gives 12345 3346 trunc (1.2345.6, -) gives 12345 3347 lnput parameters type 339 op: dataset { measure<number> _+ } 330</number></pre>	3321	Syntax	
<pre>3323 op the operand 3326 op the operand 3327 numDigit the number of position from which to trunc 3328 Examples of valid syntaxes 3329 trune (DS_1, 2) 3330 trune (DS_1) 3331 trune (3.14159, _) 3332 trune (3.14159, _) 3333 Trune (3.14159, _) 3333 The operator trune truncates the operand to a number of positions at the right of the decimal point equal to the 3335 The operator trune truncates the operand to a number of positions at the right of the decimal point equal to the 3356 number of trune truncates the operand to a number of positions of the mumDigit is negative, the truncation 3377 the operator trune truncates the operand to a number of positions of the result is integer if numDigit is 3380 on the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 3388 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 3390 on the off trune (3.14159, 2) gives 3.14 341 trune (3.14159, 2) gives 3.14 342 trune (12345.6, 0) gives 12345.0 344 trune (12345.6, -1) gives 12345.0 3457 trune (12345.6, -1) gives 12345.0 346 trune(12345.6, -1) gives 12340.0 347 348 Input parameters type 349 Op :: dataset {measure<number> _+ } 350 [component<mumber> 353 [numDigit :: component<inumber> 353 [numDigit :: dataset {measure<number> _+ } 353 [component<mumber> 353 [number 3558 [component<mumber> 3558 [component<mumber> 3559 Additional constraints 356] Additional constraints 357 None.</mumber></mumber></mumber></number></inumber></mumber></number></pre>			; (op , numDigit)
3325 op the operand numDigit the number of position from which to trunc 3327 3328 Examples of valid syntaxes 3329 trune (DS_1, 2) 3330 trune (DS_1) 3331 trune (S14159, _) 3333 3334 Semantics for scalar operations 3335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is omitted, number otherwise. 3340 For example: 3341 trune (3.14159, 2) gives 3.141 3342 trune (3.14159, 4) gives 3.1415 3343 trune (12345.6, 0) gives 12345. 3344 trune (12345.6, -) gives 12345 3345 trune (12345.6, -) gives 12345 3346 trune (12345.6, -) gives 12345 3347 Input parameters type 3349 Op :: dataset {measure <number> _+ } 3350 [component<number> 3351 numDigit :: dataset {measure<number> _+ } 3355 <i>Result type</i> 3356 result :: dataset {measure<number> _+ } 3357 [component<number> 3358 numDigit :: dataset {measure<number> _+ } 3359 // Component<number> 3359 // Second = tinteger > 3350 // Additional constraints 3361 None.</number></number></number></number></number></number></number>	3323		
322 op the operand 323 numDigit the number of position from which to trunc 3237 Examples of valid syntaxes 3238 trunc (DS_1, 2) 3330 trunc (3.14159, 2) 3331 trunc (3.14159, 2) 3333 Semantics for scalar operations 334 Semantics for scalar operations 335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point. The truncation operation leaves the numDigit position unchanged. All the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is omitted, number otherwise. 334 For example: 334 trunc (3.14159, 2) gives 3.141 334 trunc (3.14159, 2) gives 3.141 334 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6, 0) gives 12345 3345 trunc (12345.6, -) gives 12345.0 3346 trunc (12345.6, -) gives 12345.0 3347 Input parameters type 3348 Input parameters type 3349 op :: dataset {measure <number> _* } 3351 integer 3352 numDigit ::</number>	3324	Input Parame	ters
3327 Examples of valid syntaxes 3328 Examples of valid syntaxes 3329 trune (DS_1, 2) 3330 trune (0, 14159, 2) 3331 trune (3.14159, 2) 3333 Semantics for scalar operations 3333 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation unchanged All the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is omitted, number otherwise. 334 For example: 334 trunc (3.14159, 2) gives 3.14 334 trunc (12.41459, 4) gives 3.1415 3341 trunc (12.4345.6) gives 12.345.0 3344 trunc (12.3445.6) gives 12.345.0 3345 trunc (12.345.6, -1) gives 12.345.0 3346 trunc (12.345.6, -1) gives 12.345.0 3350 component<	3325		
3327 Examples of valid syntaxes 3328 Examples of valid syntaxes 3329 trune (DS_1, 2) 3330 trune (0, 14159, 2) 3331 trune (3.14159, 2) 3333 Semantics for scalar operations 3333 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation unchanged All the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is omitted, number otherwise. 334 For example: 334 trunc (3.14159, 2) gives 3.14 334 trunc (12.41459, 4) gives 3.1415 3341 trunc (12.4345.6) gives 12.345.0 3344 trunc (12.3445.6) gives 12.345.0 3345 trunc (12.345.6, -1) gives 12.345.0 3346 trunc (12.345.6, -1) gives 12.345.0 3350 component<	3326	numDigit	
<pre>3329 trunc (DS_1, 2) 333 trunc (3,14159, 2) 333 trunc (3,14159, 2) 333 Semantics for scalar operations 335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 337 happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 338 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 339 omitted, number otherwise. 330 For example: 334 trunc (3,14159, 2) gives 3,14 334 trunc (1,2445.6, 0) gives 12345.0 334 trunc (12345.6, 0) gives 12345 334 trunc (12345.6, -) gives 12345 335 trunc (12345.6, -) gives 12345.0 336 trunc (12345.6, -) gives 12345 337 trunc (12345.6, -) gives 12345 338 trunc (12345.6, -) gives 12345.0 339 op : dataset {measure<number> _+ } 330 i component<number> 331 i number 332 numDigit : dataset {measure<number> _+ } 333 drunc i trunc frequers truncater truncaters type 334 drunc truncater truncater truncaters truncaters = + } 335 result :: dataset {measure<number> _+ } 336 i number 337 i component < number> 338 i number 339 339 330 Additional constraints 331 None.</number></number></number></number></pre>		Ũ	·
<pre>3330 trunc (DS_1) 333 trunc (3.14159, 2) 333 333 334 Semantics for scalar operations 335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point. The truncation operation leaves the numDigit position unchanged. All 338 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 339 omitted, number otherwise. 330 For example: 331 trunc (3.14159, 2) gives 3.14 332 trunc (3.14159, 2) gives 3.14 333 trunc (12345.6, 0) gives 12345. 334 trunc (12345.6, -) gives 12345. 334 trunc (12345.6, -1) gives 12345. 334 Input parameters type 339 op: dataset {measure<number> _+ } 330</number></pre>	3328	Examples of v	alid syntaxes
<pre>3331 trunc (3.14159 , 2) 333 333 Semantics for scalar operations 333 Semantics for scalar operations 333 The operator trunc truncets the operand to a number of positions at the right of the decimal point equal to the 336 numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 337 happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 338 trunc (3.14159, 2) gives 3.14 trunc (3.14159, 2) gives 3.14 334 trunc (3.14159, 4) gives 3.141 334 trunc (12345.6, 0) gives 12345 334 trunc (12345.6, -) gives 12345 334 trunc (12345.6, -) gives 12345 334 trunc (12345.6, - 1) gives 12345 334 Input parameters type 336 Op :: dataset { measure<number> _+ } 337 338 in umDigit :: component<integer> 339 330 330 Additional constraints 330 Additional constraints 331 331 332 333 333 333 333 333 333 333</integer></number></pre>	3329	trunc (DS_1	, 2)
<pre>3332 trunc (3.14159, _) 3333 3334 Semantics for scalar operations 3335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the 3336 numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 3337 happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 3338 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 3340 operator trunc (3.14159, 2) gives 3.14 3341 trunc (3.14159, 4) gives 3.1415 3343 trunc (1.2345.6, 0) gives 12345.0 3344 trunc (1.2345.6, 0) gives 12345 3346 trunc (1.2345.6, -1) gives 12345 3347 input parameters type 3349 op :: dataset { measure<number> _+ } 3350</number></pre>	3330	trunc (DS_1	
3333 Semantics for scalar operations 3334 Semantics for scalar operations 3335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the numDigit parameter. The decimal point. The truncation operation leaves the numDigit position unchanged. All the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is omitted, number otherwise. 3340 For example: 3341 trunc (3.14159, 2.) gives 3.14 3342 trunc (3.14159, 4.) gives 3.1415 3343 trunc (12345.6, 0.) gives 12345.0 3344 trunc (12345.6,) gives 12345.0 3345 trunc (12345.6,) gives 12345.0 3346 trunc (12345.6,) gives 12345.0 3347 atrunc (12345.6,) gives 12345.0 3348 Input parameters type ataset { measure <number> _+ } 3350 component<number> _+ } 3351 number 3352 numDigit :: component < integer > _+ } 3353 integer 3354 result :: dataset { measure<number> _+ + } 3355 result :: dataset { measure<number> _+ + } <td>3331</td><td>trunc (3.141</td><td>59,2)</td></number></number></number></number>	3331	trunc (3.141	59,2)
3334 Semantics for scalar operations 3335 The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the 336 numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 337 happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 338 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 339 omitted, number otherwise. 3340 For example: 3341 trunc (3.14159, 2) gives 3.14 3342 trunc (12345.6, 0) gives 12345. 3343 trunc (12345.6, 0) gives 12345. 3341 trunc (12345.6, -) gives 12345. 3342 trunc (12345.6, -1) gives 12345. 3343 trunc (12345.6, -1) gives 12345. 3344 trunc (12345.6, -1) gives 12345. 3345 trunc (12345.6, -1) gives 12345. 3350 component <number> _+ } 3350 component<number> _+ } 3351 number 3352 numDigit :: component <integer> _+ } 3353 number 3354 component<number>+ }</number></integer></number></number>	3332	trunc (3.141	59 , _)
3335 The operator trunc truncates the operand to a number of positions at the right of the decimal point is assumed to be at position 0. If numDigit is negative, the truncation happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All the positions greater than numDigit are eliminated. The basic scalar type of the result is <i>integer</i> if numDigit is omitted, <i>number</i> otherwise. 3340 For example: 3341 trunc (3.14159, 2) gives 3.14 3342 trunc (3.14159, 4) gives 3.1415 3343 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6, -) gives 12345. 3345 trunc (12345.6, -) gives 12345. 3346 trunc (12345.6, -) gives 12345. 3347 Input parameters type 3350 component <number> _+ } 3351 number 3352 numDigit :: component<number> _+ } 3353 number 3354 result type 3355 Result type 3356 result :: dataset { measure<number> _+ } 3357 component<number> _+ } 3358 number 3359 component<number> _+ } 3357 component<number> _+ } 3358 number</number></number></number></number></number></number>	3333		
<pre>3336 numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 337 happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 338 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 339 omitted, number otherwise. 3340 For example: 3341 trunc (3.14159, 2) gives 3.14 3342 trunc (1.2345.6, 0) gives 3.1415 3343 trunc (1.2345.6, 0) gives 12.345 3344 trunc (1.2345.6, -) gives 12.345 3345 trunc (1.2345.6, -1) gives 12.345 3346 trunc(1.2345.6, -1) gives 12.345 3347 3348 Input parameters type 3349 op :: dataset {measure<number> _+ } 3350</number></pre>	3334	Semantics for	scalar operations
3337happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All338the positions greater than numDigit are eliminated. The basic scalar type of the result is <i>integer</i> if numDigit is339omitted, number otherwise.340For example:341trunc (3.14159, 2) gives 3.14342trunc (12345.6, 0) gives 3.1415343trunc (12345.6, 0) gives 12345.0344trunc (12345.6, -) gives 12345345trunc(12345.6, -1) gives 12345.346trunc(12345.6, -1) gives 12345.347Input parameters type339Op ::3350 component <number> _+ }3351 number3353 integer3354/ numDigit ::3355Result type3356result ::3357 component<number> _+ }3358 number335933603360Additional constraints3361None.</number></number>	3335		
<pre>3338 the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 3339 omitted, number otherwise. 3340 For example: 3341 trunc (3.14159, 2) gives 3.14 3342 trunc (3.14159, 4) gives 3.1415 3343 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6, _) gives 12345 3346 trunc (12345.6, -) gives 12345 3347 3348 Input parameters type 3349 op :: dataset {measure<number> _+ } 3350 number 3351 number 3351 integer 3353 k integer 3354 result type 3356 result :: dataset { measure<number> _+ } 3357 component<number> _+ } 3358 number 3358 number</number></number></number></pre>			
3339 omitted, number otherwise. 3340 For example: 3341 trunc (3.14159, 2) gives 3.14 3342 trunc (1.2145, 6, 0) gives 1.2345.0 3344 trunc (1.2345, 6) gives 1.2345 3345 trunc (1.2345, 6, -) gives 1.2345 3346 trunc (1.2345, 6, -) gives 1.2345 3347 Input parameters type 3350 component <number> _+ } 3351 number 3352 numDigit :: component < integer ></number>			
3340 For example: 3341 trunc (3.14159, 2) gives 3.14 3342 trunc (3.14159, 4) gives 3.1415 3343 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6, -) gives 12345 3345 trunc (12345.6, -1) gives 12345.0 3346 trunc (12345.6, -1) gives 12345.0 3347 Input parameters type 3349 Op :: dataset { measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer > 3354 integer 3355 Result type 3356 result :: 3357 component<number> _+ } 3358 number 3359 </number></number></number>			
3341 trunc (3.14159, 2) gives 3.14 3342 trunc (3.14159, 4) gives 3.1415 3343 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6, -) gives 12345 3345 trunc (12345.6, -) gives 12345 3346 trunc (12345.6, -1) gives 12345 3347 Input parameters type 3350 component <number> _+ } 3351 number 3353 integer 3354 integer </number>			<i>ber</i> otherwise.
3342 trunc (3.14159, 4) gives 3.1415 3343 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6, _) gives 12345 3345 trunc (12345.6, _) gives 12345 3346 trunc (12345.6, -1) gives 12340.0 3347 Jate 12345.6, -1) gives 12340.0 3347 Jate 12345.6, -1) gives 12340.0 3348 Input parameters type			
3343 trunc (12345.6, 0) gives 12345.0 3344 trunc (12345.6) gives 12345 3345 trunc (12345.6, _) gives 12345 3346 trunc (12345.6, -1) gives 12340.0 3347 3348 Input parameters type 3349 Op :: dataset { measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer ></number></number>			
3344 trunc (12345.6) gives 12345 3345 trunc (12345.6, _) gives 12345 3346 trunc(12345.6, -1) gives 12340.0 3347 3348 Input parameters type 3349 op :: dataset {measure <number> _+ } 3350 component<number> _+ } 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 component < number> _+ } 3355 Result type 3356 result :: dataset {measure<number> _+ } 3357 component<number> _+ } 3358 number 3359 3360 Additional constraints 3361 None.</number></number></number></number>			
3345 trunc (12345.6, _) gives 12345 3346 trunc(12345.6, -1) gives 12340.0 3347 3348 Input parameters type 3349 op :: dataset { measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 </number></number>			
3346 trunc(12345.6, -1) gives 12340.0 3347 3348 Input parameters type 3349 Op :: dataset {measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 3355 Result type 3356 result :: dataset {measure<number> _+ } 3357 component<number> _+ } 3357 component<number> _+ } 3356 result :: dataset {measure<number> _+ } 3357 component<number> _+ } 3358 number 3359 3360 Additional constraints 3361 None. None.</number></number></number></number></number></number></number>			
3347 3348 Input parameters type 3349 op :: dataset { measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 integer 3355 Result type 3356 result :: dataset { measure<number> _+ } 3357 component<number> _+ } 3358 number 3359 3360 Additional constraints 3361 None. None.</number></number></number></number>			
3348 Input parameters type 3349 op :: dataset { measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 3355 Result type 3356 result :: dataset { measure<number> _+ } 3357 component<number> _+ } 3358 number 3359 3360 Additional constraints 3361 None.</number></number></number></number>		trunc	(12345.6, -1) gives 12340.0
3349 op :: dataset { measure <number> _+ } 3350 component<number> 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 3355 Result type 3356 result :: dataset { measure<number> _+ } 3357 component<number> 3358 number 3359 3360 Additional constraints 3361 None.</number></number></number></number>			
3350 component <number> 3351 number 3352 numDigit :: component < integer > 3353 integer 3354 3355 Result type 3356 result :: dataset { measure<number> _+ } 3357 component<number> _+ } 3358 number 3359 3360 Additional constraints 3361 None.</number></number></number>			
3351 number 3352 numDigit :: component < integer > 3353 integer 3354 3355 Result type 3356 result :: dataset { measure <number> _+ } 3357 component<number> 3358 number 3359 3360 Additional constraints 3361 None.</number></number>		op ::	
3352 numDigit :: component < integer > 3353 integer 3354 3355 Result type 3356 result :: dataset { measure <number> _+ } 3357 component<number> 3358 number 3359 3360 Additional constraints 3361 None.</number></number>			
3353 integer 3354 integer 3355 Result type 3356 result :: dataset { measure <number> _+ } 3357 component<number> 3358 number 3359 3360 Additional constraints 3361 None.</number></number>		D' ''	
3354 3355 Result type 3356 result :: dataset { measure <number> _+ } 3357 component<number> 3358 number 3359 3360 Additional constraints 3361 None.</number></number>		numDigit ::	
3355Result type3356result ::dataset { measure <number> _+ }3357 component<number>3358 number33593360Additional constraints3361None.</number></number>			integer
3356 result :: dataset { measure <number> _+ } 3357 component<number> 3358 number 3359 3360 Additional constraints 3361 None.</number></number>		Dereilter	
3357component <number>3358number335933603360Additional constraints3361None.</number>			detect (magnum mumber)
3358number33593360Additional constraints3361None.		result ::	
 3359 3360 Additional constraints 3361 None. 			
 3360 Additional constraints 3361 None. 			
3361 None.		Additional cor	ostrainte
		NUIL.	
	5502		

3363 **Behaviour**

3364 As for the invocations at Data Set level, the operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component", as for the invocations at Component or Scalar level, the operator has 3365 3366 the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set Components", (see the 3367 section "Typical behaviours of the ML Operators").

3368

3369 Examples

3370 3371

Given the operand Data Set DS_1:

3372

DS_1					
ld_1	ld_1	Me_1	Me_2		
10	А	7.5	5.9		
10	В	7.1	5.5		
11	А	36.2	17.7		
11	В	44.5	24.3		

3373 3374

33

3	7	5	
9	'	9	

Example 1:

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	7.0	5.0
10	В	7.0	5.0
11	А	36.0	17.0
11	В	44.0	24.0

 $DS_r := trunc(DS_1, 0)$

3376

3377 Example 2 (on components):

DS_r := DS_1[calc Me_10:= trunc(Me_1)]

results in:

results in:

2	9	'	'	
3	3	7	8	

DS_r						
ld_1	ld_2	Me_1	Me_2	Me_10		
10	А	7.5	5.9	7		
10	В	7.1	5.5	7		
11	А	36.2	17.7	36		
11	В	44.5	24.3	44		

3379

3381

Example 3 (on components): 3380

DS_r := DS_1[calc Me_20:= trunc(Me_1 , -1)]

results in:

DS_r	DS_r						
ld_1	ld_2	Me_1	Me_2	Me_20			
10	А	7.5	5.9	0			
10	В	7.1	5.5	0			
11	А	36.2	17.7	30			
11	В	44.5	24.3	40			

Ceiling : ceil 3383

3384	Syntax	
3385	ceil (d) (qq
3386		
3387	Input paramete	ers
3388	op the op	erand
3389		
3390	Examples of val	lid syntaxes
3391	ceil(DS_1)	
3392	ceil (3.14159	
3393		
3394	Semantics for s	calar operations
3395	The operator C	eil returns the smallest integer greater than or equal to op.
3396	For example:	
3397	ceil(3	.14159) gives 4
3398	ceil(1	5) gives 15
3399	ceil(-3	3.1415) gives -3
3400	ceil(-C	0.1415) gives 0
3401		
3402	Input paramete	ers type
3403	op ::	dataset { measure <number> _+ }</number>
3404		component <number></number>
3405		number
3406		
3407	Result type	
3408	result ::	dataset { measure <integer> _+ }</integer>
3409		<pre>component< integer ></pre>
3410		integer
3411		
3412	Additional cons	traints
3413	None.	
3414		
3415	Behaviour	

The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component" (see the section "Typical behaviours of the ML Operators"). 3416

results in:

3417

3418 3419 Examples

Ē

Given the operand Data Set DS_1: 3420

Example 1: DS_r := ceil (DS_1)

3421

DS_1					
ld_1	ld_1	Me_1	Me_2		
10	А	7.0	5.9		
10	В	0.1	-5.0		
11	А	-32.2	17.7		
11	В	44.5	-0.3		

3422 3423

DS_r					
ld_1	ld_1	Me_1	Me_2		
10	А	7	6		
10	В	1	-5		
11	А	-32	18		

11	В	45	0
11	Ь	ЧJ	0

Example 2 (on components): $DS_r := DS_1 [calc Me_{10} := ceil (Me_{1})]$ results in:

DS_r						
ld_1	ld_1	Me_1	Me_2	Me_10		
10	А	7.0	5.9	7		
10	В	0.1	-5.0	1		
11	А	-32.2	17.7	-32		
11	В	44.5	-0.3	45		

3429Floor:floor3430Syntax

3430	Бупцил	
3431	floor	(op)
3432		
3433	Input paramete	ers
3434	op the op	erand
3435		
3436	Examples of va	lid syntaxes
3437	floor(DS_1)	
3438	floor (3.14159	Θ (
3439		
3440		calar operations
3441	The operator f	loor returns the greatest integer which is smaller than or equal to op.
3442	For example:	
3443	,	3.1415) gives 3
3444	floor(
3445		-3.1415) gives -4
3446	floor(-0.1415) gives -1
3447		
3448	Input paramete	
3449	op ::	dataset { measure <number> _+ }</number>
3450		component <number></number>
3451		number
3452		
3453	Result type	
3454	result ::	dataset { measure <integer> _+ }</integer>
3455		<pre>component< integer ></pre>
3456		integer
3457		
3458	Additional cons	straints
3459	None.	
3460		
3461	Behaviour	
3462		as the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set
3463	Component" (s	ee the section "Typical behaviours of the ML Operators").
3464		
3465	Examples	
3466	Given the oper	and Data Set DS_1:
3167		

DS_1			
ld_1	ld_1	Me_1	Me_2

10	А	7.0	5.9
10	В	0.1	-5.0
11	А	-32.2	17.7
11	В	44.5	-0.3

3469 3470 Example 1:

 $DS_r := floor (DS_1)$

results in:

DS_r					
ld_1	ld_1	Me_1	Me_2		
10	А	7	5		
10	В	0	-5		
11	А	-33	17		
11	В	44	-1		

3471

3472 Example 2 (on components): DS_r := DS_1 [calc Me_10 := floor (Me_1)] results in:

3473

DS_r						
ld_1	ld_1	Me_1	Me_2	Me_10		
10	А	7.5	5.9	7		
10	В	0.1	-5.5	0		
11	А	-32.2	17.7	-33		
11	В	44.5	-0.3	44		

Absolute value : abs

```
3475
        Syntax
3476
               abs ( op )
3477
3478
        Input parameters
               the operand
3479
        ор
3480
        Examples of valid syntaxes
3481
        abs (DS_1)
3482
3483
        abs (-5)
3484
        Semantics for scalar operations
3485
3486
        The operator abs calculates the absolute value of a number.
        For example:
3487
3488
                abs (-5.49)
                               gives 5.49
3489
               abs ( 5.49 )
                               gives 5.49
3490
3491
        Input parameters type
3492
3493
        op ::
                        dataset { measure<number> _+ }
3494
                       | component<number>
3495
                       | number
3496
3497
        Result type
3498
                       dataset { measure<number [ value >= 0 ]> _+ }
3499
        result ::
3500
                       component<number [ value >= 0 ]>
```

- 3501 | number [value >= 0]
- 35023503 Additional constraints
- 3504 None.
- 3505

3506 *Behaviour*

The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component" (see the section "Typical behaviours of the ML Operators").

3509 3510 *Examples*

3511 Given the operand Data Set DS_1:

3512

DS_1					
ld_1	ld_2	Me_1	Me_2		
10	А	0.484183	0.7545		
10	В	-0.515817	-13.45		
11	А	-1.000000	187.0		

3513 3514

3515

Example 1:

DS_r := abs (DS_1)

results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	0.484183	0.7545	
10	В	0.515817	13.45	
11	А	1.000000	187	

3516 3517

17 Example 2 (on components): $DS_r := DS_1 [calc Me_{10} := abs(Me_{11})]$

results in:

3518

DS_r					
ld_1	ld_2	Me_1	Me_2	Me_10	
10	А	0.484183	0.7545	0.484183	
10	В	-0.515817	-13.45	0.515817	
11	А	-1.000000	187	1.000000	

3519

3520 Exponential : exp

3521 3522 3523	Syntax exp (op)
3524	Input parameters
3525	op the operand
3526	
3527	Examples of valid syntaxes
3528	exp(DS_1)
3529	exp (5)
3530	
3531	Semantics for scalar operations
3532	The operator exp returns e (base of the natural logarithm) raised to the op-th power.
3533	For example;
3534	exp (5) gives 148.41315
3535	exp (1) gives 2.71828 (the number e)

3536 3537 3538	exp(exp(, 0	es 1.0 es 0.36787 (the number 1/e	e)
3530 3539 3540 3541 3542 3543	<i>Input paramet</i> op::	dataset { n	neasure <numbe nt<number></number></numbe 	er> _+ }	
3545 3544 3545 3546 3547 3548	<i>Result type</i> result ::		neasure <numbe nt<number [va<br="">value > 0]</number></numbe 		_+ }
3548 3549 3550 3551	<i>Additional con</i> None.	straints			
3552 3553 3554 3555 3556	Component" (<i>Examples</i>	see the sectior	n "Typical beha		ole on one Scalar Value or Data Set or Data Set L Operators").
3557 3558	Given the oper	rand Data Set	DS_1:		1
	DS_1 Id_1	ld_2	Me_1	Me_2	
	10	A	5	0.7545	
	10	В	8	13.45	
	11	А	2	1.87	
3559 3560 3561 3562	Example 1:		DS_r := 0	exp(DS_1)	results in:
	DS_r				

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	148.413	2.126547	
10	В	2980.95	693842.3	
11	А	7.38905	6.488296	

results in:

3563

3564 Example 2 (on components): $DS_r := DS_1 [calc Me_1 := exp (Me_1)]$

3565

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	148.413	0.7545	
10	В	2980.95	13.45	
11	А	7.389	1.87	

3566

Natural logarithm : ln 3567

3568 Syntax

3569

In (op)

3570	
3571	Input parameters
3572	op the operand
3573	
3574	Examples of valid syntaxes
3575	ln (DS_1)
3576	ln (148)
3577	
3578	Semantics for scalar operations
3579	The operator In calculates the natural logarithm of a number.
3580	For example:
3581	In (148) gives 4.997
3582	In (e) gives 1.0
3583	In (1) gives 0.0
3584	In (0,5) gives -0.693
3585	
3586	Input parameters type
3587	op :: dataset { measure <number [value=""> 0] > _+ }</number>
3588	<pre>component<number [value=""> 0] ></number></pre>
3589	number [value > 0]
3590	
3591	Result type
3592	result :: dataset { measure <number> _+ }</number>
3593	<pre>component<number></number></pre>
3594	number
3595	
3596	Additional constraints
3597	None.
3598	
3599	Behaviour

3600 The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component" (see the section "Typical behaviours of the ML Operators"). 3601

3602 3603 **Examples**

Given the operand Data Set DS_1: 3604 3605

DS_1				
ld_1	ld_2	Me_1	Me_2	
10	А	148.413	0.7545	
10	В	2980.95	13.45	
11	А	7.38905	1.87	

3606 3607

Example 1: 3608

3609

 $DS_r := ln(DS_1)$

results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	5.0	-0.281700	
10	В	8.0	2.598979	
11	А	2.0	0.625938	

3610

3611 Example 2 (on components): DS_r := DS_1 [calc Me_2 := ln (DS_1#Me_1)]

results in:

DS_r				
ld_1	ld_2	Me_1	Me_2	
10	А	148.413	5.0	
10	В	2980.95	8.0	
11	А	7.38905	2.0	

Power: power 3614 3615 **Syntax** 3616 power (base , exponent) 3617 3618 Input parameters 3619 the operand base 3620 exponent the exponent of the power 3621 3622 Examples of valid syntaxes power (DS_1, 2) 3623 3624 power (5, 2) 3625 Semantics for scalar operations 3626 The operator **power** raises a number (the base) to another one (the exponent). 3627 For example: 3628 3629 power (5, 2) gives 25 power (5, 1) gives 5 3630 power (5, 0) gives 1 3631 3632 power (5, -1) gives 0.2 3633 power (-5, 3) gives -125 3634 3635 Input parameters type base :: dataset { measure<number> _+ } 3636 3637 | component<number> 3638 | number 3639 exponent :: component<number> 3640 | number 3641 Result type 3642 dataset { measure<number>_+ } 3643 result :: 3644 | component<number> 3645 l number 3646

3647 *Additional constraints*

3648 None.

3649

3650 Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component", as for the invocations at Component or Scalar level, the operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set Components", (see the section "Typical behaviours of the ML Operators").

3655

3656 *Examples*

3657 Given the operand Data Set DS_1:

DS_1			
ld_1	ld_2	Me_1	Me_2

10	А	3	0.7545
10	В	4	13.45
11	А	5	1.87

3661

3662

 $DS_r := power(DS_1, 2)$ Example 1: results in:

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	9	0.56927
10	В	16	180.9025
11	А	25	3.4969

3663

 $DS_r := DS_1[calc Me_1 := power(Me_1, 2)]$ results in: 3664 Example 2 (on components): 3665

> DS_r ld_1 ld_2 Me_1 Me_2 9 0.7545 10 А 10 В 16 13.45 11 А 25 1.87

3667	Logarithn	n:	log
3668	Syntax		
3669		p , num)	
3670			
3671	Input paramete	rs	
3672	op the bas	e of the logarithm	n
3673	num the nur	nber to which the	e logarithm is applied
3674			
3675	Examples of value	id syntaxes	
3676	log (DS_1, 2)		
3677	log(1024, 2)		
3678			
3679	Semantics for sc		
3680	-	g calculates the	logarithm of num base op.
3681	For example:		
3682		024, 2)	gives 10
3683	log (10	024, 10)	gives 3.01
3684			
3685	Input paramete		
3686	op ::		ure <number [value=""> 1] > _+ }</number>
3687		• •	number [value > 1] >
3688		number [valu	
3689	num ::		eger [value > 0]>
3690		integer [value	> 0]
3691	_		
3692	Result type		
3693	result ::		ure <number>_+ }</number>
3694		component <r< td=""><td>number></td></r<>	number>
3695		number	

- 3696
- 3697 *Additional constraints*3698 None.

3699 3700 *Behaviou*

700 Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component", as for the invocations at Component or Scalar level, the operator has the behaviour of the "Operators applicable on two Scalar Values or Data Sets or Data Set Components", (see the

- 3704 section "Typical behaviours of the ML Operators").
- 3705

3706 *Examples*

Given the operand Data Set DS_1:

3708

DS_1			
ld_1	ld_2	Me_1	Me_2
10	А	1024	0.7545
10	В	64	13.45
11	А	32	1.87

3709 3710

3711 *Example 1:*

3712

DS_r	:= log ((DS_1, 2)
------	----------	-----------

results in:

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	10.0	-0.40641
10	В	6.0	3.749534
11	А	5.0	0.903038

3713

3714 Example 2 (on components): DS_r := DS_1 [calc Me_1 := log (Me_1, 2)] results in:

3715

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	10.0	0.7545
10	В	6.0	13.45
11	А	5.0	1.87

3716

3717 Square root : sqrt

3718 Syntax 3719 sqrt (op) 3720 3721 *Input parameters* 3722 ор the operand 3723 3724 Examples of valid syntaxes 3725 sqrt (DS_1) 3726 sqrt (5) 3727 3728 Semantics for scalar operations The operator **sqrt** calculates the square root of a number. For example: 3729 3730 sqrt (25) gives 5

3731 3732	Input parameters type	
3732		<pre>dataset { measure<number [value="">= 0] > _+ }</number></pre>
3733	op ::	
		<pre>component<number [value="">= 0] ></number></pre>
3735		number [value >= 0]
3736		
3737	Result type	
3738	result ::	<pre>dataset { measure<number[value>= 0] > _+ }</number[value></pre>
3739		<pre>component<number[value>= 0] ></number[value></pre>
3740		number[value >= 0]
3741		
3742	Additional constraints	
37/3	None	

3743 None.3744

Behaviour

The operator has the behaviour of the "Operators applicable on one Scalar Value or Data Set or Data Set Component" (see the section "Typical behaviours of the ML Operators").

results in:

Examples

3750 Given the operand Data Set DS_1:

DS_1			
ld_1	ld_2	Me_1	Me_2
10	А	16	0.7545
10	В	81	13.45
11	А	64	1.87

Example 1: DS_r := sqrt(DS_1)

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	4	0.86862
10	В	9	3.667424
11	А	8	1.367479

3758 Example 2 (on components): DS_r := DS_1 [calc Me_1 := sqrt (Me_1)] results in:

DS_r			
ld_1	ld_2	Me_1	Me_2
10	А	4	0.7545
10	В	9	13.45
11	А	8	1.87

3763 VTL-ML - Comparison operators

3764	Equal to : =
3765	
3766	Syntax
3767	left = right
3768	
3769	Input parameters
3770	left the left operand
3771	right the right operand
3772	
3773	Examples of valid syntaxes
3774	$DS_1 = DS_2$
3775	
3776	Semantics for scalar operations
3777	The operator returns TRUE if the left is equal to right, FALSE otherwise.
3778	For example:
3779	5 = 9 gives: FALSE
3780 3781	5 = 5 gives: TRUE "hello" = "hi" gives: FALSE
3781	Tiello - Tii gives: FALSE
3782	Input parameters type
3783	left,
3785	right :: dataset {measure <scalar>_}</scalar>
3786	component <scalar></scalar>
3787	scalar
3788	
3789	Result type
3790	result :: dataset { measure <boolean> bool_var }</boolean>
3791	component <boolean></boolean>
3792	boolean
3793	
3794	Additional constraints
3795	Operands left and right must be of the same scalar type
3796	
3797	Behaviour
3798	The operator has the typical behaviour of the "Operators changing the data type" (see the section "Typica
3799	behaviours of the ML Operators").

3800

3801 *Examples*

3802 Given the operand Data Set DS_1:

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
2012	В	Total	Total	NULL
2012	G	Total	Total	0.286
2012	S	Total	Total	0.064
2012	М	Total	Total	0.043
2012	F	Total	Total	0.08
2012	W	Total	Total	0.08

3805 Exc

Example 1: DS_r := DS_1 = 0.08

results in:

3806

DS_r				
ld_1	ld_2	ld_3	ld_4	bool_var
2012	В	Total	Total	NULL
2012	G	Total	Total	FALSE
2012	S	Total	Total	FALSE
2012	м	Total	Total	FALSE
2012	F	Total	Total	TRUE
2012	W	Total	Total	TRUE

3807 3808 3809

Example 2 (on Components): DS_r := DS_1 [calc Me_2 := Me_1 = 0.08]

results in:

DS_r					
ld_1	Id_2	ld_3	ld_4	Me_1	Me_2
2012	В	Total	Total	NULL	NULL
2012	G	Total	Total	0.286	FALSE
2012	S	Total	Total	0.064	FALSE
2012	м	Total	Total	0.043	FALSE
2012	F	Total	Total	0.08	TRUE
2012	W	Total	Total	0.08	TRUE

3810

3811 Not equal to : <>

3812			
3813	Syntax		
3814		left <> right	
3815			
3816	Input p	arameters	
3817	left	the left operand	
3818	right	the right operand	
3819			
3820	Exampl	les of valid syntaxes	
3821	DS_1 <	<> DS_2	
3822			
3823	Semant	tics for scalar operations	
3824	The op	erator returns FALSE if t	he left is equal to right, TRUE otherwise.
3825	For exa	imple:	
3826		5 <> 9	gives: TRUE
3827		5 <> 5	gives: FALSE
3828		"hello" <> "hi"	gives: TRUE
3829			
3830	Input p	arameters type	
3831	left,		
3832	right ::	dataset {meas	ure <scalar>_}</scalar>
3833		component <s< td=""><td>calar></td></s<>	calar>
3834		scalar	
3835			

3836 Result type

3837	result ::	<pre>dataset { measure<boolean> bool_var }</boolean></pre>
3838		component <boolean></boolean>
3839		boolean
3840		

3841 *Additional constraints*

3842 Operands left and right must be of the same scalar type

3844 *Behaviour*

The operator has the typical behaviour of the "Operators changing the data type" (see the section "Typical behaviours of the ML Operators").

3848 Examples

3849 Given the operand Data Sets DS_1 and DS_2:

3850

3843

3847

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
G	Total	Percentage	Total	7.1
R	Total	Percentage	Total	NULL

3851 3852

DS_2				
ld_1	ld_2	ld_3	ld_4	Me_1
G	Total	Percentage	Total	7.5
R	Total	Percentage	Total	3

3853 3854

DS_r := DS_1 <> DS_2

results in:

3855

DS_r				
ld_1	ld_2	ld_3	ld_4	bool_var
G	Total	Percentage	Total	TRUE
R	Total	Percentage	Total	NULL

3856

3859

3861

Note that due to the behaviour for NULL values, if the value for Greece in the second operand had also beenNULL, then the result would still be NULL for Greece.

3860 Example 2 (on Components):

Example 1:

nts): DS_r := DS_1 [calc Me_2 := Me_1<>7.5]

results in:

DS_r					
ld_1	ld_2	ld_3	ld_4	Me_1	Me_2
G	Total	Percentage	Total	7.5	TRUE
R	Total	Percentage	Total	3	NULL

>

3862

3863

3864 **Greater than :**

 3865
 Syntax

 3866
 left { > | >= }¹ right

 3867

3868	Input paramete	ers	
3869	left the lef	t operand part of	the comparison
3870	right the rig	ht operand part of	of the comparison
3871			
3872	Examples of va	lid svntaxes	
3873	DS 1 > DS 2		
3874	DS 1 >= DS		
3875		-	
3876	Semantics for s	calar operations	
3877			f left is greater than right, FALSE otherwise.
3878			<i>L</i> if left is greater than or equal to right, FALSE otherwise.
3879	For example:		
3880		5 > 9	gives: FALSE
3881		5 >= 5	gives: TRUE
3882		"hello" > "hi"	gives: FALSE
3883			8
3884	Input paramete	ers type	
3885	left,		
3886	,	t {measure <sca< td=""><td>lar> }</td></sca<>	lar> }
3887	5	component <s< td=""><td></td></s<>	
3888		scalar	
3889		1	
3890	Result type		
3891	result ::	dataset { mea	sure <boolean> bool_var }</boolean>
3892		component<	
3893		boolean	
3894			
3895	Additional cons	straints	
3896			of the same scalar type
3897	operanasiona	ina ngin mase se	or the sume scalar type
3898	Behaviour		
3899		as the typical hel	haviour of the "Operators changing the data type" (see the section "Typical
3900		the ML Operators	
3901	2 charlourd of (and the operators	· ,·
2002	Evamples		

Examples 3902

3903 Given the operand Data Set DS_1:

3904

DS_1								
ld_1	ld_2	ld_3	ld_4	ld_5	Me_1			
2	G	2011	Total	Percentage	NULL			
2	R	2011	Total	Percentage	12.2			
2	F	2011	Total	Percentage	29.5			

DS_r := DS_1 > 20

3905 3906

Example 1:

3907

DS_r								
ld_1	ld_2	ld_3	ld_4	Id_5	bool_var			
2	G	2011	Total	Percentage	NULL			
2	R	2011	Total	Percentage	FALSE			
2	F	2011	Total	Percentage	TRUE			

results in:

3908 3909 3910

DS_r := DS_1 [calc Me_2 := Me_1 > 20] Example 2 (on Components):

DS_r						
ld_1	ld_2	ld_3	ld_4	ld_5	Me_1	Me_2

2	G	2011	Total	Percentage	NULL	NULL
2	R	2011	Total	Percentage	12.2	FALSE
2	F	2011	Total	Percentage	29.5	TRUE

3912 Given the left operand Data Set: 3913

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
G	Total	Percentage	Total	7.1
R	Total	Percentage	Total	42.5

3914

and the right operand Data Set:

3915 3916

DS_2							
ld_1	ld_2	ld_3	ld_4	Me_1			
G	Total	Percentage	Total	7.5			
R	Total	Percentage	Total	33.7			

 $DS_r := DS_1 > DS_2$

3917

3918 3919

Example 3:

results in:

DS_r						
ld_1	ld_2	ld_3	ld_4	bool_var		
G	Total	Percentage	Total	FALSE		
R	Total	Percentage	Total	TRUE		

3920

If the Me_1 column for Germany in the DS_2 Data Set had a NULL value the result would be: 3921

DS_r				
ld_1	ld_2	ld_3	ld_4	bool_var
G	Total	Percentage	Total	NULL
R	Total	Percentage	Total	TRUE

3923

Less than : < <= 3924

3925 3926

Syntax left { < | <= $\}^1$ right 3927

3928 3929

Input parameters 3930 left the left operand the right operand 3931 right 3932 Examples of valid syntaxes 3933 $DS_1 < DS_2$ 3934 $DS_{1} \le DS_{2}$ 3935 3936 3937 Semantics for scalar operations

3938 The operator < returns TRUE if left is smaller than right, FALSE otherwise.

The operator <= returns TRUE if left is smaller than or equal to right, FALSE otherwise. 3939

2010		
3940	For example:	
3941		5 < 4 gives: FALSE
3942		5 <= 5 gives: TRUE
3943		"hello" < "hi" gives: TRUE
3944	T	
3945	Input paramet	
3946	left, right ::	dataset {measure <scalar>_}</scalar>
3947		component <scalar></scalar>
3948 3949		scalar
	Decult type	
3950 3951	<i>Result type</i> result ::	datasat (maggurashaalaans haal war)
3951	result .:	dataset { measure <boolean> bool_var } component<boolean></boolean></boolean>
3952 3953		boolean
3953 3954		boolean
3955	Additional con	straints
3956		and right must be of the same scalar type
3950 3957	Operation left a	ind right must be of the same scalar type
3958	Behaviour	
3959		has the typical behaviour of the "Operators changing the data type" (see the section "Typical
3960		the ML Operators").
3961	bond rourb or	
3962	Examples	
3963		and Data Set DS_1:
3964		
	DS_1	

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
2012	В	Total	Total	11094850
2012	G	Total	Total	11123034
2012	S	Total	Total	46818219
2012	М	Total	Total	NULL
2012	F	Total	Total	5401267
2012	W	Total	Total	7954662

Example 1:

DS_r := DS_1 < 1500000

results in:

DS_r				
ld_1	ld_2	ld_3	ld_4	bool_var
2012	В	Total	Total	TRUE
2012	G	Total	Total	TRUE
2012	S	Total	Total	FALSE
2012	м	Total	Total	NULL
2012	F	Total	Total	TRUE
2012	W	Total	Total	TRUE

3968

3969 Between :

between

 3970
 Syntax

 3972
 between (op, from, to)

Input r	arameters					
op	the Data Set to be chee	cked				
from	the left delimiter					
to	the right delimiter					
	les of valid syntaxes					
	between(ds1, 5,10)					
ds2 :=	ds1 [calc m1 := betwe	en(me2, 5,	10)]			
Seman	tics for scalar operations	s				
	erator returns TRUE if		r than or equal	to from and l	ower than or e	equal to to. In other ter
	ortcut for the following:		*			*
	op >= from and op <=	= to				
The ty	pes of op, from and to m	ust be comp	patible scalar ty	pes.		
	arameters type					
op ::	dataset {mea		:>_}			
	component	<scalar></scalar>				
	scalar					
6						
from ::	scalar comp					
to ::	scalar comp	onent <scala< td=""><td>r></td><td></td><td></td><td></td></scala<>	r>			
Result	huna					
result :		assurachoo	elan> bool_var	l		
result.	component			ſ		
	boolean					
Additic	nal constraints					
	be of the operand (i.e., the state of the operand (i.e., the state of from and to.	he measure	of the dataset, t	the type of the	e component, th	he scalar type) must be
D-L						
Behavi		obariourof	the "Operators	changing the	data tuma" (caa	the costion "Trimical
	erator has the typical be ours of the ML Operator		the operators	changing the	uata type (see	e the section Typical
DEIIAVI	Juis of the ML Operator	is j.				
Examp	les					
p						
Given t	he following Data Set D	S_1:				
						1
DS_						-
	ld_1	ld_2	ld_3	ld_4	Me_1	-
	G	Total	Percentage	Total	6	 -
	R	Total	Percentage	Total	-2	
Examp	le 1: DS_r	:= between	(ds1, 5,10)	resu	ılts in:	

DS_1				
ld_1	ld_2	ld_3	ld_4	bool_var
G	Total	Percentage	Total	TRUE
R	Total	Percentage	Total	FALSE

Element of: in / not_in

Syntax			
op in <u>co</u>			
ορ ποτ _	in collection		
<u>collection</u>	<u>n</u> ::= set valueDomai	nName	
Innuthananatan			
<i>Input parameters</i> op	the operand to b	a tastad	
collection	the the Set or the		which co
set	the Set which co		
valueDomainNar			-
Examples of valid			· ·
ds := ds_2 in {1,4		, here the brac	es denote
ds := ds_3 in my ds := ds_3 in my			
.a .– ua_a in my	valueDomalli		
Semantics for scal	lar operations		
	eturns TRUE if op belong	gs to the colled	tion, FALS
	ator returns FALSE if op l		
For example:	·	-	
1 in { 1		returns	TRUE
	· , , , ,	returns	FALSE
		returns	FALSE
D NOT_I	n { "a", "hello", "c"}	returns	TRUE
Input parameters	type		
	{measure <scalar>_}</scalar>		
	component <scalar></scalar>		
i	scalar		
collection ::	set <scalar> name<valu< td=""><td>ie_domain></td><td></td></valu<></scalar>	ie_domain>	
Result type		, , ,	
result ::	dataset { measure bo	olean> bool_v	ar }
l	component <boolean></boolean>		
I	boolean		
Additional constru	aints		
	st be of a basic scalar dat	a type compat	ble with t
1		51 F we	
Behaviour			
Semantics			
-	evaluates to TRUE if the o	perand is an e	lement of
the not_in the op			
	the typical behaviour of	the "Operator	s changing
	e ML Operators").	a dafi	
The collection ca Domain or Set.	n be either a <i>set</i> of value	s defined in li	ie or a nai
Domain of Set.			
Examples			
	d Data Set DS_1:		
DS_1			
Id_1	Id_2	Me_	1
2012	BS	0	
2012	60	0	

2012	GZ	4
2012	SQ	9
2012	MO	6
2012	FJ	7
2012	CQ	2

Example 1:

DS_r		
ld_1	ld_2	bool_var
2012	BS	TRUE
2012	GZ	FALSE
2012	SQ	FALSE
2012	MO	TRUE
2012	FJ	FALSE
2012	CQ	FALSE

DS_r := DS_1 in { 0, 3, 6, 12 }

Example 2 (on Components):

140 : DS_r := DS_1 [calc Me_2:= Me_1 in { 0, 3, 6, 12 }]

1	res	ul	ts	in:	

DS_r				
ld_1	ld_2	Me_1	Me_2	
2012	BS	0	TRUE	
2012	GZ	4	FALSE	
2012	SQ	9	FALSE	
2012	MO	6	TRUE	
2012	FJ	7	FALSE	
2012	CQ	2	FALSE	

Given the previos Data Set DS_1 and the following Value Domain named myGeoValueDomain (which has the basic scalar type *string*) :

results in:

myGeoValueDomain			
Code	Meaning		
AF	Afghanistan		
BS	Bahamas		
FJ	Fiji		
GA	Gabon		
КН	Cambodia		
MO	Macao		
РК	Pakistan		
QA	Quatar		

UG	Uganda

4093

DS_

Example 3 (on external Value Domain):

DS_r := DS_1#Id_2 in myGeoValueDomain

_r		
ld_1	ld_2	bool_var
2012	BS	TRUE
2012	GZ	FALSE
2012	SQ	FALSE
2012	MO	TRUE
2012	FJ	TRUE

CQ

4094 4095

4096 match_characters

2012

match_characters

FALSE

4098 Syntax 4099 match_characters (op , pattern) 4100 Input parameters 4101 Input parameters 4102 Input parameters 4103 op the dataset to be checked 4104 pattern the regular expression to check the Data Set or the Component against 4105 Examples of valid syntaxes 4106 match_characters(ds1, "[abc]+\d\d") 4107 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The string regexp is an Extended Regular Expression as described in the POSIX standard. Different implementations of VTL may implement different versions of the POSIX standard therefore it is possible that match_characters may behave in slightly different ways. 4116 Input parameters type 4118 op :: dataset {measure <string>_} 4120 component<string>_} 4120 string</string></string>
4100 match_characters (op , pattern) 4101 Input parameters 4102 Input parameters 4103 op the dataset to be checked 4104 pattern the regular expression to check the Data Set or the Component against 4105 Examples of valid syntaxes 4106 Examples of valid syntaxes 4107 match_characters(ds1, "[abc]+\d\d") 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4116 input parameters type 4118 4119 op :: dataset {measure <string>_} 4120 component<string>_}</string></string>
4101 Input parameters 4102 Input parameters 4103 op the dataset to be checked 4104 pattern the regular expression to check the Data Set or the Component against 4105 Examples of valid syntaxes 4106 Examples of valid syntaxes 4107 match_characters(ds1, "[abc]+\d\d") 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The string regexp is an Extended Regular Expression as described in the POSIX standard. Different implementations of VTL may implement different versions of the POSIX standard therefore it is possible that match_characters may behave in slightly different ways. 4116 Input parameters type 4118 0p :: dataset {measure <string>_} 4120 component<string></string></string>
4102 Input parameters 4103 op the dataset to be checked 4104 pattern the regular expression to check the Data Set or the Component against 4105 Examples of valid syntaxes 4106 Examples of valid syntaxes 4107 match_characters(ds1, "[abc]+\d\d") 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The string regexp is an Extended Regular Expression as described in the POSIX standard. Different implementations of VTL may implement different versions of the POSIX standard therefore it is possible that match_characters may behave in slightly different ways. 4116 Input parameters type 4118 op 4119 op 4120 component <string>_}</string>
4103 op the dataset to be checked 4104 pattern the regular expression to check the Data Set or the Component against 4105 4106 Examples of valid syntaxes 4107 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The string regexp is an Extended Regular Expression as described in the POSIX standard. Different implementations of VTL may implement different versions of the POSIX standard therefore it is possible that match_characters may behave in slightly different ways. 4116 Input parameters type 4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
4104 pattern the regular expression to check the Data Set or the Component against 4105 Examples of valid syntaxes 4106 Examples of valid syntaxes 4107 match_characters(ds1, "[abc]+\d\d") 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4113 string regexp is an Extended Regular Expression of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 Input parameters type 4118 [component <string>] 4120 component<string>]</string></string>
4105 4106 Examples of valid syntaxes 4107 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 4111 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
4107 4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 4111 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 Op :: dataset {measure <string>_} 4120 component<string></string></string>
4108 match_characters(ds1, "[abc]+\d\d") 4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 4111 4111 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 4118 4119 4119 op 4120 component <string></string>
4109 ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")] 4110 4111 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 Input parameters type 4118 0p 4119 op 4120 component <string></string>
4110 4111 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
4111 Semantics for scalar operations 4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
4112 match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 <i>Input parameters type</i> 4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
 4113 string regexp is an Extended Regular Expression as described in the POSIX standard. Different implementations of VTL may implement different versions of the POSIX standard therefore it is possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 op :: dataset {measure<string>_}</string> 4120 component<string></string>
 4114 implementations of VTL may implement different versions of the POSIX standard therefore it is 4115 possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 op :: dataset {measure<string>_}</string> 4120 component<string></string>
 4115 possible that match_characters may behave in slightly different ways. 4116 4117 Input parameters type 4118 4119 op :: dataset {measure<string>_}</string> 4120 component<string></string>
4116 4117 Input parameters type 4118 4119 0p :: dataset {measure <string>_} 4120 component<string></string></string>
4117 Input parameters type 4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
4118 4119 op :: dataset {measure <string>_} 4120 component<string></string></string>
4119op::dataset {measure <string>_}4120 component<string></string></string>
4120 component <string></string>
4121 string
4122 pattern :: string component <string> 4123</string>
4125
4124 4125 <i>Result type</i>
4126 result :: dataset { measure <booelan> bool_var }</booelan>
4127 component boolean>
4128 boolean
4129
4130 Additional constraints
4131 If op is a Data Set then it has exactly one measure.

- 4132 pattern is a POSIX regular expression.
- 4133 4134 Behaviour

The operator has the typical behaviour of the "Operators changing the data type" (see the section "Typical 4135 4136 behaviours of the ML Operators").

4137 4138 Examples

4139 Given the following Dataset DS_1:

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
G	Total	Percentage	Total	AX123
R	Total	Percentage	Total	AX2J5

4140

4141

4142 DS_r:=(ds1, "[:alpha:]{2}[:digit:]{3}") results in:

41	43

DS_r				
ld_1	ld_2	ld_3	ld_4	bool_var
G	Total	Percentage	Total	TRUE
R	Total	Percentage	Total	FALSE

4144 4145

Isnull: isnull 4146

4147	Syntax	
4148	isnull	(op)
4149		
4150	Input paramete	rs
4151	operand	mandatory the operand
4152		
4153	Examples of val	id syntaxes
4154	isnull(DS_1)	
4155		
4156	Semantics for se	calar operations
4157	The operator re	eturns TRUE if the value of the operand is NULL, FALSE otherwise.
4158		
4159	Examples	
4160	isnull("Hello")	
4161	isnull(NULL) g	jives: TRUE
4162		
4163	Input paramete	
4164	op ::	dataset {measure <scalar>_}</scalar>
4165		component <scalar></scalar>
4166		scalar
4167		
4168	Result type	
4169	result ::	<pre>dataset { measure<boolean> bool_var }</boolean></pre>
4170		component <boolean></boolean>
4171		boolean
4172		
4173	Additional cons	
4174	If op is a Data S	et then it has exactly one measure.
4175		
4176	Behaviour	

4177 The operator has the typical behaviour of the "Operators changing the data type" (see the section "Typical

results in:

- 4178 behaviours of the ML Operators").
- 4179

4180 Examples

4181 Given the operand Data Set DS_1:

4182

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
2012	В	Total	Total	11094850
2012	G	Total	Total	11123034
2012	S	Total	Total	NULL
2012	М	Total	Total	417546
2012	F	Total	Total	5401267
2012	Ν	Total	Total	NULL

 $DS_r := isnull(DS_1)$

4183

4184 4185 Example 1:

DS_r				
ld_1	ld_2	ld_3	ld_4	bool_var
2012	В	Total	Total	FALSE
2012	G	Total	Total	FALSE
2012	S	Total	Total	TRUE
2012	М	Total	Total	FALSE
2012	F	Total	Total	FALSE
2012	Ν	Total	Total	TRUE

4186 4187

4187 4188 Example 2 (on Components): DS_r := DS_1[calc Me_2 := isnull(Me_1)]

results in:

DS_r	DS_r							
ld_1	ld_2	ld_3	ld_4	Me_1	Me_2			
2012	В	Total	Total	11094850	FALSE			
2012	G	Total	Total	11123034	FALSE			
2012	S	Total	Total	NULL	TRUE			
2012	М	Total	Total	417546	FALSE			
2012	F	Total	Total	5401267	FALSE			
2012	N	Total	Total	NULL	TRUE			

4189 4190

4191 Exists in : exists_in

- 4192
- 4193 Syntax
- 4194 **exists_in (** op1, op2 { , <u>retain</u> } **)** 4195
- 4196 <u>retain</u> ::= **true** | **false** | **all** 4197
- 4198 Input parameters

4199	op1	the operand dataset
4200	op2	the operand dataset
4201	retain	the optional parameter to specify the Data Points to be returned (default: all)
4202		
4203	Examples of va	lid syntaxes
4204		_1, DS_2, true)
4205	exists_in (DS	
4206	exists_in (DS	_1, DS_2, all)
4207	_ 、	
4208	Semantics for s	calar operations
4209		cannot be applied to scalar values.
4210	1	
4211	Input paramet	ers type
4212	op1,	
4213	op2 ::	dataset
4214		
4215	Result type	
4216	result ::	dataset { measure <boolean> bool_var }</boolean>
4217		
4218	Additional con	straints
4219	op1 has at leas	t all the identifier components of op2 or op2 has at least all the identifier components of op1.
4220	•	
4221	Behaviour	
4222	The operator t	akes under consideration the common Identifiers of op1 and op2 and checks if the combinations
4223		ese Identifiers which are in op1 also exist in op2.
4224	The result has	the same Identifiers as op1 and a <i>boolean</i> Measure bool_var whose value, for each Data Point of
4225	op1, is TRUE if	the combination of values of the common Identifier Components in op1 is found in a Data Point of
4226	op2, FALSE otl	
4227		then both the Data Points having bool_var = TRUE and bool_var = FALSE are returned. If retain is
4228	true then only	the data points with bool_var = TRUE are returned. If retain is false then only the Data Points
4229		= FALSE are returned. If the retain parameter is omitted, the default is all.
4230		has the typical behaviour of the "Operators changing the data type" (see the section "Typical
4231	•	the ML Operators").
4232		
4233	Examples	

Examples

-

4234 Given the operand Data Sets DS_1 and DS_2:

DS_1						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	11094850		
2012	G	Total	Total	11123034		
2012	S	Total	Total	46818219		
2012	М	Total	Total	417546		
2012	F	Total	Total	5401267		
2012	W	Total	Total	7954662		

4230	

DS_2							
ld_1	ld_2	ld_3	ld_4	Me_1			
2012	В	Total	Total	0.023			
2012	G	Total	М	0.286			
2012	S	Total	Total	0.064			
2012	М	Total	М	0.043			

2012	F	Total	Total	NULL
2012	W	Total	Total	0.08

4241

Example 1: DS_r := exists_in (DS_1, DS_2, all)

results in:

DS_r							
ld_1	ld_2	ld_3	ld_4	bool_var			
2012	В	Total	Total	TRUE			
2012	G	Total	Total	FALSE			
2012	S	Total	Total	TRUE			
2012	М	Total	Total	FALSE			
2012	F	Total	Total	TRUE			
2012	W	Total	Total	TRUE			

4242 4243 4244

Example 2: DS_r := exists_in (DS_1, DS_2, true)

results in:

DS_r						
ld_1	ld_2	ld_3	ld_4	bool_var		
2012	В	Total	Total	TRUE		
2012	S	Total	Total	TRUE		
2012	F	Total	Total	TRUE		
2012	W	Total	Total	TRUE		

4245

Example 3:

4246 4247 DS_r := exists_in (DS_1, DS_2, false)

results in:

DS_r						
ld_1	ld_2	ld_3	ld_4	bool_var		
2012	G	Total	Total	FALSE		
2012	М	Total	Total	FALSE		

4249 VTL-ML - Boolean operators

4250	Logical c	onjunction:	and	
4251 4252 4253 4254	<i>Syntax</i> op1 a	nd op2		
4255 4256 4257		<i>ers</i> st operand conf operand		
4258 4259 4260	Examples of va	lid syntaxes		
4260 4261 4262	DS_1 and DS_ Semantics for s	_ ∠ calar operations		
4263 4264 4265	The and opera <i>boolean</i> type. For example:	tor returns TRUE if both operand	s are TR	UE, otherwise FALSE. The two operands must be of
4265 4266 4267	roi example.	FALSE and FALSE FALSE and TRUE	gives gives	FALSE FALSE
4268 4269 4270		FALSE and NULL TRUE and FALSE TRUE and TRUE	gives gives gives	FALSE FALSE TRUE
4271 4272		TRUE and NULL NULL and NULL	gives gives	NULL
4273 4274 4275	<i>Input paramete</i> op1,	ers type		
4276 4277 4278	op2 ::	<pre>dataset {measure<boolean>_} component<boolean> boolean</boolean></boolean></pre>		
4279 4280	Result type			
4281 4282 4283	result ::	dataset { measure <boolean> _ component<boolean> boolean</boolean></boolean>	_}	
4284 4285	Additional cons			
4286 4287 4288	None. Behaviour			
4289 4290 4291		as the typical behaviour of the "Bo the ML Operators").	ehaviour	of Boolean operators" (see the section "Typical
4291	F			

4292 *Examples*

4293 Given the operand Data Sets DS_1 and DS_2: 4294

DS_1							
ld_1	ld_2	ld_3	ld_4	Me_1			
М	15	В	2013	TRUE			
М	64	В	2013	FALSE			
М	65	В	2013	TRUE			
F	15	U	2013	FALSE			

F	64	U	2013	FALSE
F	65	U	2013	TRUE

DS_2				
ld_1	ld_2	ld_3	ld_4	Me_1
М	15	В	2013	FALSE
М	64	В	2013	TRUE
М	65	В	2013	TRUE
F	15	U	2013	TRUE
F	64	U	2013	FALSE
F	65	U	2013	FALSE

4297

4298 4299

Example 1:

DS_r:= DS_1 and DS_2

results in:

results in:

4300

DS_r				
ld_1	ld_2	ld_3	ld_4	Me_1
М	15	В	2013	FALSE
М	64	В	2013	FALSE
М	65	В	2013	TRUE
F	15	U	2013	FALSE
F	64	U	2013	FALSE
F	65	U	2013	FALSE

4301 4302

Example 2 (on Components): DS_r := DS_1 [calc Me_2:= Me_1 and true]

4303

DS_r					
ld_1	ld_2	ld_3	ld_4	Me_1	Me_2
М	15	В	2013	TRUE	TRUE
М	64	В	2013	FALSE	FALSE
М	65	В	2013	TRUE	TRUE
F	15	U	2013	FALSE	FALSE
F	64	U	2013	FALSE	FALSE
F	65	U	2013	TRUE	TRUE

Logical disjunction : or 4304

4305	Syntax	ζ.
4306	-	op1 or op2
4307		
4308	Input	parameters
4309	op1	the first operand
4310	op2	the second operand
4311		
4312	Ехатр	oles of valid syntaxes
4313	DS_1	or DS_2

4315 Semantics for scalar operations

- The or operator returns TRUE if at least one of the operands is TRUE, otherwise FALSE. The two operands must 4316
- 4317 be of *boolean* type.
- 4318 For example:

4314

4319	FALSE or FALSE	gives FALSE
4320	FALSE or TRUE	gives TRUE
4321	FALSE or NULL	gives NULL
4322	TRUE or FALSE	gives TRUE
4323	TRUE or TRUE	gives TRUE
4324	TRUE or NULL	gives TRUE
4325	NULL or NULL	gives NULL
4326		-

Input parameters type 4327

4328	op1,	
4329	op2 ::	dataset {measure <boolean>_}</boolean>
4330		component <boolean></boolean>
4331		boolean
4332	Result type	
4333	result ::	<pre>dataset { measure<boolean> _ }</boolean></pre>
4334		component <boolean></boolean>
4335		boolean
4336		

Additional constraints 4337

4338 None. 4339

Behaviour 4340

The operator has the typical behaviour of the "Behaviour of Boolean operators" (see the section "Typical 4341 4342 behaviours of the ML Operators").

4343 4344 **Examples**

4345 Given the operand Data Sets DS_1 and DS_2:

4346

DS_1					
ld_1	ld_2	ld_3	ld_4	Me_1	
М	15	В	2013	TRUE	
М	64	В	2013	FALSE	
М	65	В	2013	TRUE	
F	15	U	2013	FALSE	
F	64	U	2013	FALSE	
F	65	U	2013	TRUE	

4347 4348

DS_2				
ld_1	ld_2	ld_3	ld_4	Me_1
М	15	В	2013	FALSE
М	64	В	2013	TRUE
М	65	В	2013	TRUE
F	15	U	2013	TRUE
F	64	U	2013	FALSE
F	65	U	2013	FALSE

DS_r				
ld_1	ld_2	ld_3	ld_4	Me_1
М	15	В	2013	TRUE
М	64	В	2013	TRUE
М	65	В	2013	TRUE
F	15	U	2013	TRUE
F	64	U	2013	FALSE
F	65	U	2013	TRUE

4353

4354

DS_r

DS_r:= DS_1 [calc Me_2:= Me_1 or true] *Example 2 (on Components)*:

results in:

ld_1	ld_2	ld_3	ld_4	Me_1	Me_2
М	15	В	2013	TRUE	TRUE
М	64	В	2013	FALSE	TRUE
М	65	В	2013	TRUE	TRUE
F	15	U	2013	FALSE	TRUE
F	64	U	2013	FALSE	TRUE
F	65	U	2013	TRUE	TRUE
	M M M F F	M 15 M 64 M 65 F 15 F 64	M 15 B M 64 B M 65 B F 15 U F 64 U	M 15 B 2013 M 64 B 2013 M 65 B 2013 F 15 U 2013 F 64 U 2013	M 15 B 2013 TRUE M 64 B 2013 FALSE M 65 B 2013 TRUE F 15 U 2013 FALSE F 64 U 2013 FALSE

4355

Exclusive disjunction : xor 4356

4357	Syntax		
4358	op1 x0	or op2	
4359			
4360	Input paramete	rs	
4361	op1 the firs	t operand	
4362	op2 the sec	ond operand	
4363			
4364			
4365	Examples of val	id syntaxes	
4366	DS_1 xor DS	_2	
4367			
4368	Semantics for so		
4369			ne of the operand is TRUE (but not both), FALSE otherwise. The two
4370	-	be of <i>boolean</i> type.	
4371	For example:		
4372		FALSE xor FALSE	gives FALSE
4373		FALSE xor TRUE	gives TRUE
4374		FALSE xor NULL	gives NULL
4375		TRUE xor FALSE	gives TRUE
4376		TRUE xor TRUE	gives FALSE
4377		TRUE xor NULL	gives NULL
4378		NULL xor NULL	gives NULL
4379	_		
4380	Input paramete	rs type	
4381	op1,		
4382	op2 ::	dataset {measure <boo< th=""><th></th></boo<>	
4383		component <boolean></boolean>	
4384		boolean	

4386	Result type	
4387	result ::	<pre>dataset { measure<boolean> _ }</boolean></pre>
4388		component <boolean></boolean>
4389		boolean
4390		

Additional constraints

4392 None.

Behaviour

The operator has the typical behaviour of the "Behaviour of Boolean operators" (see the section "Typical
behaviours of the ML Operators").

Examples

4399 Given the operand Data Sets DS_1 and DS_2:

DS_1						
ld_1	ld_2	ld_3	ld_4	Me_1		
М	15	В	2013	TRUE		
М	64	В	2013	FALSE		
М	65	В	2013	TRUE		
F	15	U	2013	FALSE		
F	64	U	2013	FALSE		
F	65	U	2013	TRUE		

DS_2				
ld_1	ld_2	ld_3	ld_4	Me_1
М	15	В	2013	FALSE
М	64	В	2013	TRUE
М	65	В	2013	TRUE
F	15	U	2013	TRUE
F	64	U	2013	FALSE
F	65	U	2013	FALSE

Example 1:

DS_r						
ld_1	ld_2	ld_3	ld_4	Me_1		
М	15	В	2013	TRUE		
М	64	В	2013	TRUE		
М	65	В	2013	FALSE		
F	15	U	2013	TRUE		
F	64	U	2013	FALSE		
F	65	U	2013	TRUE		

DS_r:=DS_1 xor DS_2

07 Example 2 (on Components): DS_r:= DS_1 [calc Me_2:= Me_1 xor true]

results in:

DS_r	DS_r					
ld_1	ld_2	ld_3	ld_4	Me_1	Me_2	
М	15	В	2013	TRUE	FALSE	
М	64	В	2013	FALSE	TRUE	
М	65	В	2013	TRUE	FALSE	
F	15	U	2013	FALSE	TRUE	
F	64	U	2013	FALSE	TRUE	
F	65	U	2013	TRUE	FALSE	

4410 Logical negation : not

4411 4412 **Syntax** 4413 not op 4414 4415 Input parameters 4416 the operand ор 4417 4418 Examples of valid syntaxes not DS 1 4419 4420 4421 Semantics for scalar operations 4422 The **not** operator returns TRUE if op is FALSE, otherwise TRUE. The input operand must be of *boolean* type. 4423 For example: not FALSE gives TRUE 4424 gives FALSE 4425 not TRUE not NULL 4426 gives NULL 4427 4428 Input parameters type 4429 dataset {measure<boolean>_ } op :: | component<boolean> 4430 4431 | boolean 4432 4433 Result type 4434 result :: dataset { measure<boolean> _ } | component<boolean> 4435 | boolean 4436 4437 4438 Additional constraints 4439 None. 4440 4441 **Behaviour** The operator has the typical behaviour of the "Behaviour of Boolean operators" (see the section "Typical 4442 behaviours of the ML Operators"). 4443 4444 4445 **Examples** 4446 Given the operand Data Set DS_1: 4447

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
М	15	В	2013	TRUE
М	64	В	2013	FALSE

М	65	В	2013	TRUE
F	15	U	2013	FALSE
F	64	U	2013	FALSE
F	65	U	2013	TRUE

Example 1: 4450

DS_r:= not DS_1

DS_r					
ld_2	ld_3	ld_4	Me_1		
15	В	2013	FALSE		
64	В	2013	TRUE		
65	В	2013	FALSE		
15	U	2013	TRUE		
64	U	2013	TRUE		
65	U	2013	FALSE		
	15 64 65 15 64	15 B 64 B 65 B 15 U 64 U	15 B 2013 64 B 2013 65 B 2013 15 U 2013 64 U 2013		

4451 4452

4453

DS_r:= DS_1 [calc Me_2 := not Me_1] Example 2 (on Components):

results in:

results in:

DS_r					
ld_1	ld_2	ld_3	ld_4	Me_1	Me_2
М	15	В	2013	TRUE	FALSE
М	64	В	2013	FALSE	TRUE
М	65	В	2013	TRUE	FALSE
F	15	U	2013	FALSE	TRUE
F	64	U	2013	FALSE	TRUE
F	65	U	2013	TRUE	FALSE

4455 VTL-ML - Time operators

This chapter describes the **time** operators, which are the operators dealing with **time**, **date** and **time_period** basic scalar types. The general aspects of the behaviour of these operators is described in the section "Behaviour of the Time Operators".

4459 The *time* data type is the most general type and denotes a generic time interval, having start and end points in 4460 time and therefore a duration, which is the time intervening between the start and end points. The *date* data type 4461 denotes a generic time instant (a point in time), which is a time interval with zero duration. The time period data 4462 type denotes a regular time interval whose regular duration is explicitly represented inside each time_period 4463 value and is named period indicator. In some sense, we say that *date* and *time period* are special cases of *time*, the former with coinciding extremes and zero duration and the latter with regular duration. The *time* data type is 4464 overarching in the sense that it comprises *date* and *time_period*. Finally, *duration* data type represents a generic 4465 4466 time span, independently of any specific start and end date.

- The time, date and time period formats used here are explained in the User Manual in the section "External representations and literals used in the VTL Manuals".
- 4469 The period indicator P id of the *duration* type and its possible values are:

4470	D	Day
4471	W	Week
4472	М	Month
4473	Q	Quarter
4474	S	Semester
4475	А	Year
4476		

4477 As already said, these representation are not prescribed by VTL and are not part of the VTL standard, each VTL system 4478 can personalize the representation of time, date, time_period and duration as desired. The formats shown above are only 4479 the ones used in the examples.

4480 For a fully-detailed explanation, please refer to the User Manual.

4482 Period indicator : period_indicator

4483

4481

4484 The operator **period_indicator** extracts the period indicator from a *time_period* value.

4485 **Syntax** 4486 period indicator $(\{ op \})$ 4487 4488 Input parameters 4489 op the operand 4490 Examples of valid syntaxes 4491 4492 period indicator (ds 1) 4493 period_indicator (if used in a clause the operand op can be omitted) 4494 4495 Semantics for scalar operations period_indicator returns the period indicator of a *time_period* value. The period indicator is the part of the 4496 4497 *time_period* value which denotes the duration of the time period (e.g. day, week, month ...). 4498 4499 *Input parameters type* 4500 dataset { identifier <time_period> _ , identifier _* } op :: | component<time_period> 4501 | time_period 4502 4503 4504 Result type dataset { measure<duration> duration_var } 4505 result :: 4506 | component <duration> | duration 4507 4508

4509 *Additional constraints*

- 4510 If op is a Data Set then it has exactly an Identifier of type *time_period* and may have other Identifiers. If the 4511 operator is used in a clause and op is omitted, then the Data Set to which the clause is applied has exactly an 4512 Identifier of type *time period* and may have other Identifiers.
- 4512 Identifier of type *time_period* and may have other Identifiers. 4513

4514 Behaviour

- The operator extracts the period indicator part of the *time_period* value. The period indicator is computed for each Data Point. When the operator is used in a clause, it extracts the period indicator from the *time_period* value the Data Set to which the clause is applied.
- 4518 The operator returns a Data Set with the same Identifiers of op and one Measure of type *duration* named
- 4519 duration_var. As for all the Variables, a proper Value Domain must be defined to contain the possible values of
- 4520 the period indicator and duration_var. The values used in the examples are listed at the beginning of this chapter

results in:

- 4521 "VTL-ML Time operators".
- 4522 Examples
- 4523 Given the Data Set DS_1:

Example 1:

А

DS_r						
ld_1	ld_2	ld_3	Me_1			
А	1	2010	10			
А	1	2013Q1	50			

4524 4525

4526

1

2013Q1

DS_r := period_indicator (DS_1)

4527

4528 *Example 2 (on component):* $DS_r := DS_1 [filter period_indicator (Id_3) = "A"]$ results in:

Q

4529

DS_r			
ld_1	ld_2	ld_3	Me_1
А	1	2010	10

4530 4531

4532

4533 Fill time series : fill_time_series

4534

4538

4535 *Syntax*

4536 fill_time_series (op { , limitsMethod }) 4537

limitsMethod ::= single | all

4539 4540 Input parameters

4541 Op the operand

4542 limitsMethod method for determining the limits of the time interval to be filled (default: **all**)

4543 4544 Examples of valid syntaxes

4545 fill_time_series (ds)

4546 fill_time_series (ds, all)

4550

4552

- 4548 Semantics for scalar operations
- 4549 The fill_time_series operator does not perform scalar operations.

4551 *Input parameters type:*

op :: dataset { identifier <time > _ , identifier _* }

4553 4554 *Result type:*

result :: dataset { identifier <time > _ , identifier _* }

4555 4556 4557

4560

4558 Additional constraints

4559 The operand **op** has an Identifier of type *time, date* or *time_period* and may have other Identifiers.

4561 Behaviour

- 4562 This operator can be applied only on Data Sets of time series and returns a Data Set of time series.
- The operator fills the possibly missing Data Points of all the time series belonging to the operand op within the time limits automatically determined by applying the limit_method.
- 4565 If limitsMmethod is **all**, the time limits are determined with reference to all the time_series of the Data Set: the 4566 limits are the minimum and the maximum values of the reference time Identifier Component of the Data Set.
- 4567 If limits Mmethod is **single**, the time limits are determined with reference to each single time_series of the Data
- 4568 Set: the limits are the minimum and the maximum values of the reference time Identifier Component of the time 4569 series.
- 4570 The expected Data Points are determined, for each time series, by considering the limits above and the *period*
- 4571 (*frequency*) of the time series: all the Identifiers are kept unchanged except the reference time Identifier, which is 4572 increased of one *period* at a time (e.g. day, week, month, guarter, year) from the lower to the upper time limit.
- 4573 For each increase, an expected Data Point is identified.
- 4574 If this expected Data Points is missing, it is added to the Data Set. For the added Data Points, Measures and 4575 Attributes assume the NULL value.
- The output Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set. The ouput Data Set contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the reference time Identifier) are not changed.
- 4579 As mentioned in the section "Behaviour of the Time Operators", the operator is assumed to know which is the 4580 reference time Identifier as well as the *period* of each time series.
- 4581

4582 Examples

4583 As described in the User Manual, the *time* data type is the intervening time between two time points and using the 4584 ISO 8601 standard it can be expressed through a starte date and an end date separated by a slash at any precision. In 4585 the examples relevant to the *time* data type the precision is set at the level of month and the time format YYYY-

4586 MM/YYYY-MM is used. 4587

4588 Given the Data Set DS_1, which contains *annual* time series, where Id_2 is the reference time Identifier of *time* 4589 type.:

4590

DS_1		
ld_1	ld_2	Me_1
А	2010-01/2010-12	"hello world"
А	2012-01/2012-12	"say hello"
А	2013-01/2013-12	"he"
В	2011-01/2011-12	"hi, hello! "
В	2012-01/2012-12	"hi″
В	2014-01/2014-12	"hello!"

4591

4592 Example 1: DS_r := fill_time_series (DS_1, single)

results in:

DS_r		
ld_1	Id_2	Me_1
А	2010-01/2010-12	"hello world"
А	2011-01/2011-12	NULL
А	2012-01/2012-12	"say hello"
А	2013-01/2013-12	"he"
В	2011-01/2011-12	"hi, hello! "
В	2012-01/2012-12	"hi″
В	2013-01/2013-12	NULL
В	2014-01/2014-12	"hello!"

4596

Example 2:

DS_r := fill_time_series (DS_1, all)

results in:

DS_r		
ld_1	ld_2	Me_1
А	2010-01/2010-12	"hello world"
А	2011-01/2011-12	NULL
А	2012-01/2012-12	"say hello"
А	2013-01/2013-12	"he"
А	2014-01/2014-12	NULL
В	2010-01/2010-12	NULL
В	2011-01/2011-12	"hi, hello! "
В	2012-01/2012-12	"hi″
В	2013-01/2013-12	NULL
В	2014-01/2014-12	"hello!"

4597

Given the Data Set DS_2, which contains *annual* time series, where Id_2 is the reference time Identifier of *date* 4598 4599 type and conventionally each period is identified by its last day:

4600

DS_2		
ld_1	ld_2	Me_1
А	2010-12-31	"hello world"
А	2012-12-31	"say hello"
А	2013-12-31	"he"
В	2011-12-31	"hi, hello! "
В	2012-12-31	"hi″
В	2014-12-31	"hello!"

4601 4602

4603

Example 3:

DS_r := fill_time_series (DS_2, single)

DS_r ld_1 ld_2 Me_1 А 2010-12-31 "hello world" А 2011-12-31 NULL

А	2012-12-31	"say hello"
А	2013-12-31	"he"
В	2011-12-31	"hi, hello! "
В	2012-12-31	"hi″
В	2013-12-31	NULL
В	2014-12-31	"hello!"

Example 4: DS_r := fill_time_series (DS_2, all)

results in:

DS_r			
ld_1	ld_2	Me_1	
А	2010-12-31	"hello world"	
А	2011-12-31	NULL	
А	2012-12-31	"say hello"	
А	2013-12-31	"he"	
А	2014-12-31	NULL	
В	2010-12-31	NULL	
В	2011-12-31	"hi, hello! "	
В	2012-12-31	"hi″	
В	2013-12-31	NULL	
В	2014-12-31	"hello!"	

4607 4608 4609

Given the Data Set DS_3, which contains *annual* time series, where Id_2 is the reference time Identifier of *time_period* type:

4610 4611

DS_3		
ld_1	ld_2	Me_1
А	2010	"hello world"
А	2012	"say hello"
А	2013	"he"
В	2011	"hi, hello! "
В	2012	"hi″
В	2014	"hello!"

4612

4613 4614 Example 5: DS_r := fill_time_series (DS_3, single)

DS_r ld_1 ld_2 Me_1 "hello world" А 2010 2011 NULL А 2012 "say hello" А "he" А 2013 В 2011 "hi, hello! "

В	2012	"hi″
В	2013	NULL
В	2014	"hello!"

4617

Example 6: DS_r := fill_time_series (DS_3, all) DS_r ld_1 ld_2 Me_1 "hello world" А 2010 А 2011 NULL А 2012 "say hello" "he" А 2013 2014 NULL А В 2010 NULL В 2011 "hi, hello! " "hi″ В 2012 В 2013 NULL В 2014 "hello!"

4618

4619 4620

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the same phenomenon "A", where Id_2 is the reference time Identifier of *time_period* type,: 4621

DS_4		
ld_1	ld_2	Me_1
A	2010	"hello world"
А	2012	"say hello"
А	2010Q1	"he"
А	2010Q2	"hi, hello! "
А	2010Q4	"hi″
А	2011Q2	"hello!"

4623 4624 4625

DS_r := fill_time_series (DS_4, single) Example 7:

DS_r		
ld_1	ld_2	Me_1
А	2010	"hello world"
А	2011	NULL
А	2012	"say hello"
А	2010Q1	"he"
А	2010Q2	"hi, hello! "
А	2010Q3	NULL
А	2010Q4	"hi″
А	2011Q2	"hello!"

results in:

4627 4628 results in:

DS_r		
ld_1	ld_2	Me_1
А	2010	"hello world"
А	2011	NULL
А	2012	"say hello"
А	2010Q1	"he"
А	2010Q2	"hi, hello! "
А	2010Q3	NULL
А	2010Q4	"hi″
А	2011Q1	NULL
А	2011Q2	"hello!"
А	2011Q3	NULL
А	2011Q4	NULL
А	2012Q1	NULL
А	2012Q2	NULL
А	2012Q3	NULL
А	2012Q4	NULL

Flow to stock : flow_to_stock 4631 4632 4633 **Syntax** 4634 flow_to_stock (op) 4635 4636 **Input Parameters** 4637 op the operand 4638 4639 Examples of valid syntaxes 4640 flow to stock (ds 1) 4641 4642 Semantics for scalar operations 4643 This operator does not perform scalar operations. 4644 4645 *Input parameters type:* dataset { identifier < time > _ , identifier _* , measure<number> _+ } 4646 op :: 4647 4648 *Result type:* dataset { identifier < time > _, identifier _*, measure<number> _+ } 4649 result :: 4650 4651 Additional constraints 4652 The operand dataset has an Identifier of type *time, date* or *time period* and may have other Identifiers. 4653 4654 **Behaviour** The statistical data that describe the "state" of a phenomenon on a given moment (e.g. resident population on a 4655 4656 given moment) are often referred to as "stock data". On the contrary, the statistical data that describe "events" which can happen continuously (e.g. changes in the 4657 4658 resident population, such as births, deaths, immigration, emigration), are often referred to as "flow data". This operator takes in input a Data Set which are interpreted as flows and calculates the change of the 4659 4660 corresponding stock since the beginning of each time series by summing the relevant flows. In other words, the operator perform the cumulative sum from the first Data Point of each time series to each other following Data 4661 4662 Point of the same time series. The flow to stock operator can be applied only on Data Sets of time series and returns a Data Set of time series. 4663 The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and 4664 contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the 4665 4666 reference time Identifier) are not changed. 4667 As mentioned in the section "Behaviour of the Time Operators", the operator is assumed to know which is the *time* Identifier as well as the *period* of each time series. 4668 4669 4670 4671 **Examples** 4672 4673 As described in the User Manual, the *time* data type is the intervening time between two time points and using the 4674 ISO 8601 standard it can be expressed through a starte date and an end date separated by a slash at any precision. In 4675 the examples relevant to the *time* data type the precision is set at the level of month and the time format YYYY-4676 MM/YYYY-MM is used. 4677 4678 Given the Data Set DS 1, which contains *annual* time series, where Id 2 is the reference time Identifier of *time* 4679 type: 4680

DS_1		
ld_1	ld_2	Me_1
А	2010-01/2010-12	2
A	2011-01/2011-12	5

А	2012-01/2012-12	-3
А	2013-01/2013-12	9
В	2010-01/2010-12	4
В	2011-01/2011-12	-8
В	2012-01/2012-12	0
В	2013-01/2013-12	6

DS_r := flow_to_stock (DS_1)

results in:

83		

Example 1:

DS_r		
ld_1	ld_2	Me_1
А	2010-01/2010-12	2
А	2011-01/2011-12	7
А	2012-01/2012-12	4
А	2013-01/2013-12	13
В	2010-01/2010-12	4
В	2011-01/2011-12	-4
В	2012-01/2012-12	-4
В	2013-01/2013-12	2

Given the Data Set DS_2, which contains *annual* time series, where Id_2 is the reference time Identifier of *date* type (conventionally each period is identified by its last day):

DS_2		
ld_1	ld_2	Me_1
А	2010-12-31	2
А	2011-12-31	5
А	2012-12-31	-3
А	2013-12-31	9
В	2010-12-31	4
В	2011-12-31	-8
В	2012-12-31	0
В	2013-12-31	6

 Example 2:

DS_r := flow_to_stock (DS_2)

results in:

DS_r		
ld_1	ld_2	Me_1
А	2010-12-31	2
А	2011-12-31	7
А	2012-12-31	4
А	2013-12-31	13
В	2010-12-31	4

В	2011-12-31	-4
В	2012-12-31	-4
В	2013-12-31	2

Given the Data Set DS_3, which contains annual time series, where Id_2 is the reference time Identifier of *time_period* type:

DS_3		
ld_1	Id_2	Me_1
А	2010	2
А	2011	5
А	2012	-3
А	2013	9
В	2010	4
В	2011	-8
В	2012	0
В	2013	6

Example 3:

$DS_r := flow_to_stock (DS_3)$

results in:

DS_r		
ld_1	ld_2	Me_1
А	2010	2
А	2011	7
А	2012	4
А	2013	13
В	2010	4
В	2011	-4
В	2012	-4
В	2013	2

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the same phenomenon "A", where Id_2 is the reference time Identifier of *time_period* type:

DS_4		
ld_1	ld_2	Me_1
А	2010	2
А	2011	7
А	2012	4
А	2013	13
А	2010Q1	2
А	2010Q2	-3
А	2010Q3	7

А	2010Q4	-4

results in:

Example 4: DS_r := flow_to_stock (DS_3)

DS_r ld_1 ld_2 Me_1 А А А А А 2010Q1 А 2010Q2 -1 А 2010Q3 А 2010Q4

Stock to flow : stock_to_flow

4710		
4711	Syntax	
4712	stocl	k_to_flow(op)
4713	_	
4714	Input parame	ters
4715		
4716	ор	the operand
4717		
4718	Examples of ve	
4719	stock_to_flow	/(ds_1)
4720	Com antica for	and an anationa
4721		scalar operations
4722 4723	This operator	does not perform scalar operations.
4723	Input parame	tors tunou
4724		dataset { identifier < time > _ , identifier _* , measure <number> _+ }</number>
4725	op ::	ualaset { Identifier < time > _, Identifier _', measure <fiumber> _+ }</fiumber>
4720	Result type:	
4728	result ::	dataset { identifier < time > _ , identifier _* , measure <number> _+ }</number>
4729	result	
4730	Additional cor	astraints
4731		dataset has an Identifier of type <i>time, date</i> or <i>time_period</i> and may have other Identifiers.
4732	The operand	
4733	Behaviour	
4734		l data that describe the "state" of a phenomenon on a given moment (e.g. resident population on a
4735		t) are often referred to as "stock data".
4736		ary, the statistical data that describe "events" which can happen continuously (e.g. changes in the
4737		lation, such as births, deaths, immigration, emigration), are often referred to as "flow data".
4738		takes in input a Data Set of time series which is interpreted as stock data and, for each time series,
4739	•	e corresponding flow data by subtracting from the measure values of each regular period the
4740		g measure values of the previous one.
4741		flow operator can be applied only on Data Sets of time series and returns a Data Set of time series.
1712		the Set has the same Identifier Measure and Attribute Components as the operand Data Set and

The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the reference time Identifier) are not changed.

- The Attribute propagation rule is not applied.
- As mentioned in the section "Behaviour of the Time Operators", the operator is assumed to know which is the time Identifier as well as the *period* of each time series.

Examples

- As described in the User Manual, the *time* data type is the intervening time between two time points and using the
- ISO 8601 standard it can be expressed through a starte date and an end date separated by a slash at any precision. In
- the examples relevant to the *time* data type the precision is set at the level of month and the time format YYYY-
- MM/YYYY-MM is used.

Given the Data Set DS_1, which contains *annual* time series, where Id_2 is the reference time Identifier of *time* type:

DS_1			
ld_2	Me_1		
2010-01/2010-12	2		
2011-01/2011-12	7		
2012-01/2012-12	4		
2013-01/2013-12	13		
2010-01/2010-12	4		
2011-01/2011-12	-4		
2012-01/2012-12	-4		
2013-01/2013-12	2		
	2010-01/2010-12 2011-01/2011-12 2012-01/2012-12 2013-01/2013-12 2010-01/2010-12 2011-01/2011-12		

 Example 1:

DS_r := stock_to_flow	(DS_1)
-----------------------	--------

results in:

DS_r			
ld_1	ld_2	Me_1	
А	2010-01/2010-12	2	
А	2011-01/2011-12	5	
А	2012-01/2012-12	-3	
А	2013-01/2013-12	9	
В	2010-01/2010-12	4	
В	2011-01/2011-12	-8	
В	2012-01/2012-12	0	
В	2013-01/2013-12	6	

Given the Data Set DS_2, which contains *annual* time series, where Id_2 is the reference time Identifier of *date* type (conventionally each period is identified by its last day):

DS_2		
ld_1	ld_2	Me_1
А	2010-12-31	2
А	2011-12-31	7
А	2012-12-31	4

А	2013-12-31	13
В	2010-12-31	4
В	2011-12-31	-4
В	2012-12-31	-4
В	2013-12-31	2

Example 2:

DS_r := stock_to_flow (DS_2)

results in:

DS_r			
ld_1	ld_2	Me_1	
A	2010-12-31	2	
А	2011-12-31	5	
А	2012-12-31	-3	
А	2013-12-31	9	
В	2010-12-31	4	
В	2011-12-31	-8	
В	2012-12-31	0	
В	2013-12-31	6	

4771

4772 4773

Given the Data Set DS_3, which contains annual time series, where Id_2 is the reference time Identifier of 4774 *time_period* type:

4775

DS_3		
ld_1	ld_2	Me_1
А	2010	2
А	2011	7
А	2012	4
А	2013	13
В	2010	4
В	2011	-4
В	2012	-4
В	2013	2

4776 4777 4778

Example 3:

DS_r := stock_to_flow (DS_3)

DS_r		
ld_1	ld_2	Me_1
А	2010	2
А	2011	5
А	2012	-3
А	2013	9
В	2010	4
В	2011	-8

В	2012	0
В	2013	6

4781

4782 Given the Data Set DS_4, which contains both *quarterly* and *annual* time series relevant to the same
4783 phenomenon "A", where Id_2 is the *time* Identifier of *time_period* type:
4784

DS_4	DS_4		
ld_1	ld_2	Me_1	
А	2010	2	
А	2011	9	
А	2012	13	
А	2013	26	
А	2010Q1	2	
А	2010Q2	-1	
А	2010Q3	6	
А	2010Q4	2	

4785 4786

4787

Example 4:

DS_r := stock_to_flow (DS_4)

results in:

DS_r		
ld_1	ld_2	Me_1
А	2010	2
А	2011	7
А	2012	4
А	2013	13
А	2010Q1	2
А	2010Q2	-3
А	2010Q3	7
А	2010Q4	-4

4788

4789 Time shift : timeshift

4790	Syntax	
4791	timeshift (op, shiftNumber)	
4792		
4793	Input parameters	
4794	ор	the operand
4795	shiftNumber	the number of periods to be shifted
4796		
4797	Examples of valid synta	ixes
4798	timeshift (DS_1, 2)	
4799	timeshift (DS_1, 1)	
4800		
4801	Semantics for scalar op	perations
4802	This operator does not	t perform scalar operations.
4803		

4804 4805 4806	Input parameters type: op :: shiftNumber ::	dataset { identifier < time > _ , identifier _* integer
4807		
4808	Result type:	
4809	result ::	<pre>dataset { identifier < time > _ , identifier _*</pre>
4810		

4811 Additional constraints

4812 The operand dataset has an Identifier of type *time, date* or *time_period* and may have other Identifiers.

4813 4814 *Behaviour*

This operator takes in input a Data Set of time series and, for each time series of the Data Set, shifts the reference time Identifier of a number of periods (of the time series) equal to the shift_number parameter. If shift_number is negative, the shift is in the past, otherwise in the future. For example, if the period of the time series is month and shift_number is -1 the reference time Identifier is shifted of two months in the past.

}

}

4819 The operator can be applied only on Data Sets of time series and returns a Data Set of time series.

4820 The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and

- 4821 contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the4822 reference time Identifier) are not changed.
- 4823 The Attribute propagation rule is not applied.

4824 As mentioned in the section "Behaviour of the Time Operators", the operator is assumed to know which is the 4825 *time* Identifier as well as the *period* of each data point.

4826 4827 *Examples*

4828 As described in the User Manual, the *time* data type is the intervening time between two time points and using the

4829 ISO 8601 standard it can be expressed through a starte date and an end date separated by a slash at any precision. In

the examples relevant to the *time* data type the precision is set at the level of month and the time format YYYY MM/YYYY-MM is used.

4832

4833 Given the Data Set DS_1, which contains *yearly* time series, where Id_2 is the reference time Identifier of *time*4834 type:
4835

results in:

DS_1		
ld_1	Id_2	Me_1
А	2010-01/2010-12	"hello world"
А	2011-01/2011-12	NULL
А	2012-01/2012-12	"say hello"
А	2013-01/2013-12	"he"
В	2010-01/2010-12	"hi, hello! "
В	2011-01/2011-12	"hi″
В	2012-01/2012-12	NULL
В	2013-01/2013-12	"hello!"

4836

4837

Example 1:

DS_r := timeshift (DS_1 , -1)

DS_r		
ld_1	ld_2	Me_1
А	2009-01/2009-12	"hello world"
А	2010-01/2010-12	NULL
А	2011-01/2011-12	"say hello"
А	2012-01/2012-12	"he"
В	2009-01/2009-12	"hi, hello! "

В	2010-01/2010-12	"hi″
В	2011-01/2011-12	NULL
В	2012-01/2012-12	"hello!"

4840

4841 Given the Data Set DS_2, which contains *annual* time series, where Id_2 is the reference time Identifier of *date*

4842 type (conventionally each period is identified by its last day):

4843

DS_2		
ld_1	ld_2	Me_1
А	2010-12-31	"hello world"
А	2011-12-31	NULL
А	2012-12-31	"say hello"
А	2013-12-31	"he"
В	2010-12-31	"hi, hello! "
В	2011-12-31	"hi″
В	2012-12-31	NULL
В	2013-12-31	"hello!"

4844 4845

Example 2:

DS_r := timeshift (DS_2 , 2)

results in:

4846

DS_r		
ld_1	ld_2	Me_1
А	2012-12-31	"hello world"
А	2013-12-31	NULL
А	2014-12-31	"say hello"
А	2015-12-31	"he"
В	2012-12-31	"hi, hello! "
В	2013-12-31	"hi″
В	2014-12-31	NULL
В	2015-12-31	"hello!"

4847 4848

4849 Given the Data Set DS_3, which contains *annual* time series, where Id_2 is the reference time Identifier of *time_period* type:

DS_3		
ld_1	ld_2	Me_1
А	2010	"hello world"
А	2011	NULL
А	2012	"say hello"
А	2013	"he"
В	2010	"hi, hello! "
В	2011	"hi″
В	2012	NULL

B 2013 nello!

E results in:

4854

E.	Example 3: DS_r := timeshift (DS_3 , 1)		(DS_3,1) r
	DS_r		
	ld_1	ld_2	Me_1
	А	2011	"hello world"
	А	2012	NULL
	А	2013	"say hello"
	А	2014	"he"
	В	2011	"hi, hello! "
	В	2012	"hi″
	В	2013	NULL

2014

4855

4856

В

Given the Data Set DS_4, which contains both *quarterly* and *annual* time series relevant to the same phenomenon "A", where Id_2 is the reference time Identifier of *time_period* type: 4857 4858

"hello!"

4859

DS_4		
ld_1	ld_2	Me_1
А	2010	"hello world"
А	2011	NULL
А	2012	"say hello"
А	2013	"he"
А	2010Q1	"hi, hello! "
А	2010Q2	"hi″
А	2010Q3	NULL
А	2010Q4	"hello!"

4860 4861

Example 4:

 $DS_r := time_shift (DS_3, -1)$

results in:

4862	

DS_r			
ld_1	ld_2	Me_1	
А	2009	"hello world"	
А	2010	NULL	
А	2011	"say hello"	
А	2012	"he"	
А	2009Q4	"hi, hello! "	
А	2010Q1	"hi″	
А	2010Q2	NULL	
А	2010Q3	"hello!"	

4864 Time aggregation : time_agg

4865 4866	The operator time	a_agg converts <i>time, date</i> and <i>time_period</i> values from a smaller to a larger duration.
4867	Syntax	
4868		g(periodIndTo{, periodIndFrom } { , op } { , first last })
4869		
4870	Input parameters	
4871	op	the scalar value, the Component or the Data Set to be converted. If not specified, then
4872	op	time_agg is used in combination within an aggregation operator
4873	periodIndFrom	the source period indicator
4874	periodIndTo	the target period indicator
4875	penedinare	
4876	Examples of valid s	suntaxos
4877		all time_agg (Me, "A"))
4878		ast("2012Q1", time_period,"YYYY\Qq"))
4879		st ("2012-12-23", date, "YYYY-MM-DD"))
4880	time_agg("M", DS	
4881		Me1 := time_agg("M",Me1)]
4882		
4883	Semantics for scale	ar operations
4884	-	verts a <i>time, date</i> or <i>time_period</i> value from a smaller to a larger duration.
4885		
4886	Input parameters	type
4887	· · ·	dataset { identifier < time > _ , identifier _* }
4888	I	component <time></time>
4889		time
4890	periodIndFrom ::	duration
4891	, periodIndTo ::	duration
4892	•	
4893	Result type	
4894	op ::	dataset { identifier < time > _ , identifier _* }
4895	I	component <time></time>
4896		time
4897		
4898	Additional constra	ints
4899	If op is a Data Set	then it has exactly an Identifier of type <i>time, date</i> or <i>time_period</i> and may have other Identifiers.
4900	It is only possible	e to convert smaller duration values to larger duration values (e.g. it is possible to convert
4901	monthly data to ar	<i>inual</i> data but the contrary is not allowed).
4902	monthly adda to al	
4902	Behaviour	
4904		n of this operator takes as input a <i>time, date</i> or <i>time_period</i> value, converts it to periodIndTo
4905		ar of the corresponding type.
4906		ion acts on a single Measure Data Set of type <i>time, date</i> or <i>time_per</i> iod and returns a Data Set
4907	having the same s	• • • •
4908	-	provides a component version, for use in combination with an aggregation operator, because
4909		uency requires an aggregation. In this case, the operator converts the period_indicator of the
4910		onvert monthly data to annual data).
4911		operator maps the input value into the comprising larger regular interval, whose duration is
4912		by the periodindTo parameter.
4913	-	operator maps the input value into the comprising larger period, whose duration is the one
4914		periodindTo parameter, which is conventionally represented either by the start or by the end
4915		the first/last parameter.
4916		pe, the operator maps the input value into the comprising larger time period specified by the
4917		meter (the original period indicator is converted in the target one and the number of periods is
4918	adjusted correspo	
4919		on periodIndFrom is optional. In case of <i>time_period</i> Data Points, the input duration can be
4920		e internal representation of the value. In case of <i>time</i> or <i>date</i> types, it is inferred by the
4921		ilters on input time series can be obtained with the filter clause.
1022		

Examples

4925 Given the Data Set DS_1

DS_1					
ld_1	ld_2	Me_1			
2010Q1	А	20			
2010Q2	А	20			
2010Q3	А	20			
2010Q1	В	50			
2010Q2	В	50			
2010Q1	С	10			
2010Q2	С	10			

Example 1: DS_r := sum (DS_1) group all time_agg ("A" , _ , Me_1) results in:

DS_r				
ld_1	ld_2	Me_1		
2010	А	60		
2011	В	100		
2010	С	20		

4931		
4932	Example 2:	DS_r := time_agg ("Q", cast ("2012M01", time_period, "YYYY\MMM"))
4933		
4934		Returns: "2012Q1".
4935		
4936	Example 3:	The following example maps a <i>date</i> to quarter level, 2012 (end of the period).
4937		
4938		time_agg("Q", cast("20120213", date, "YYYYMMDD"), _ , last)
4939		
4940		and produces a <i>date</i> value corresponding to the <i>string</i> "20120331"
4941		
4942	Example 4:	The following example maps a <i>date</i> to year level, 2012 (beginning of the period).
4943		
4944		time_agg(cast("A", "2012M1", date, "YYYYMMDD"), _ , first)
4945		
4946		and produces a <i>date</i> value corresponding to the <i>string</i> "20120101".
4947		

4948 Actual time : current_date

4949	
4950	Syntax
4951	current_date ()
4952	
4953	Input parameters
4954	None
4955	
4956	Examples of valid syntax

4957	current_date
4958	
4959	Semantics for scalar operations
4960	The operator current_date returns the current time as a <i>date</i> type.
4961	
4962	Input parameters type
4963	This operator has no input parameters.
4964	
4965	Result type
4966	result :: date
4967	
4968	Additional constraints
4969	None.
4970	
4971	Behaviour
4972	The operator return the current date
4973	
4974	Examples
4975	cast (current_date, string, "YYYY.MM.DD")
4976	

4977 VTL-ML - Set operators

4978	Union:	union
4979		
4980	Syntax	
4981	union	(<u>dsList</u>)
4982		
4983	<u>dsList</u>	::= ds { , ds }*
4984	Terrer terrer et e	
4985	Input paramete	the list of Data Sets in the union
4986 4987	<u>dsList</u>	the list of Data Sets III the union
4988	Examples of val	lid syntaxes
4989	union (ds2, ds	
4990		
4991	Semantics for so	calar operations
4992		loes not perform scalar operations.
4993	_	
4994	Input paramete	ers type
4995	ds :: dataset	t
4996		
4997	Result type	
4998	result ::	dataset
4999 5000	Additional cons	strainta
5000 5001		ts in dsList have the same Identifier, Measure and Attribute Components.
5001	All the Data Set	s in dslist have the same identifier, Measure and Attribute components.
5002	Behaviour	
5004		erator implements the union of functions (i.e., Data Sets). The resulting Data Set has the same
5005		sure and Attribute Components of the operand Data Sets specified in the dsList, and contains the
5006	Data Points bel	onging to any of the operand Data Sets.
5007		ata Sets can contain Data Points having the same values of the Identifiers. To avoid duplications of
5008		the resulting Data Set, those Data Points are filtered by chosing the Data Point belonging to the left
5009		Data Set. For instance, let's assume that in union (ds1, ds2) the operand ds1 contains a Data
5010		the operand ds2 contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2,
5011		ing Data Set contains dp1 only.
5012		has the typical behaviour of the "Behaviour of the Set operators" (see the section "Typical
5013 5014		he ML Operators"). Attribute propagation is not applied.
5014 5015	i ne automatici	Attibute propagation is not applied.
5015 5016	Examples	
5010	Examples	
	<u>.</u>	

Given the operand Data Sets DS_1 and DS_2: 5018

~	~	-	~	
5	0	1	9	

DS_1							
ld_1	ld_2	ld_3	ld_4	Me_1			
2012	В	Total	Total	5			
2012	G	Total	Total	2			
2012	F	Total	Total	3			

5021

DS_2				
ld_1	ld_2	ld_3	Id_4	Me_1

2012	N	Total	Total	23
2012	S	Total	Total	5

5024 5025 Example 1:

 $DS_r := union(DS_1, DS_2)$ results in:

50)2	5	

DS_r						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	5		
2012	G	Total	Total	2		
2012	F	Total	Total	3		
2012	Ν	Total	Total	23		
2012	S	Total	Total	5		

5026 5027

Given the operand Data Sets DS_1 and DS_2: 5028

DS_1						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	5		
2012	G	Total	Total	2		
2012	F	Total	Total	3		

5029 5030

DS_2						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	23		
2012	S	Total	Total	5		

5031 5032

5033

DS_r := union (DS_1, DS_2) results in:

5034

DS_r						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	5		
2012	G	Total	Total	2		
2012	F	Total	Total	3		
2012	S	Total	Total	5		

Intersection : 5035

Example 2:

intersect

5036 Syntax

intersect (dsList) 5037 5038

 $\underline{dsList} ::= ds \{ , ds \}^*$ 5039

5040 Input parameters 5041

dsList the list of Data Sets in the intersection 5042

5044	Examples of valid syntaxes
5045	
	intersect (ds2, ds3)
5046	
5047	Semantics for scalar operations
5048	This operator cannot be applied to scalar values.
5049	
5050	Input parameters type
5051	ds :: dataset
5052	
5053	Return type
5054	result :: dataset
5055	
5056	Additional constraints
5057	All the Data Sets in dsList have the same Identifier, Measure and Attribute Components.
5058	
5059	Behaviour

5060 The **intersect** operator implements the intersection of functions (i.e., Data Sets). The resulting Data Set has the 5061 same Identifier, Measure and Attribute Components of the operand Data Sets specified in the dsList, and 5062 contains the Data Points belonging to all the operand Data Sets.

The operand Data Sets can contain Data Points having the same values of the Identifiers. To avoid duplications of Data Points in the resulting Data Set, those Data Points are filtered by chosing the Data Point belonging to the left most operand Data Set. For instance, let's assume that in **intersect** (ds1, ds2) the operand ds1 contains a Data Point dp1 and the operand ds2 contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2, then the resulting Data Set contains dp1 only.

5068 The operator has the typical behaviour of the "Behaviour of the Set operators" (see the section "Typical behaviours of the ML Operators").

5070 The automatic Attribute propagation is not applied.

5071 5072 Exar

5072 *Examples*5073 Given the operand Data Sets DS_1 and DS_2:

5074

DS_1						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	1		
2012	G	Total	Total	2		
2012	F	Total	Total	3		

5075 5076

DS_2						
ld_1	ld_2	ld_3	ld_4	Me_1		
2011	В	Total	Total	10		
2012	G	Total	Total	2		
2011	М	Total	Total	40		

5077 5078 5079

Example 1:

DS_r := intersect(DS_1,DS_2)

results in:

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
2012	G	Total	Total	2

5082	
5083	Syntax
5084	setdiff(ds1, ds2)
5085	
5086	Input parameters
5087	ds1 the first Data Set in the difference (the minuend)
5088	ds2 the second Data Set in the difference (the subtrahend)
5089	
5090	Examples of valid syntaxes
5091	setdiff (ds2, ds3)
5092	
5093	Semantics for scalar operations
5094	This operator cannot be applied to scalar values.
5095	
5096	Input parameters type
5097	ds1, ds2 :: dataset
5098	
5099	Result type
5100	result :: dataset
5101	
5102	Additional constraints
5103	The operand Data Sets have the same Identifier, Measure and Attribute Components.
5104	
5105	Behaviour
5106	The operator implements the set difference of functions (i.e. Data Sets), interpreting the Data Points of the input
5107	Data Sets as the elements belonging to the operand sets, the minuend and the subtrahend, respectively. The
5108	operator returns one single Data Set, with the same Identifier, Measure and Attribute Components as the
5109	operand Data Sets, containing the Data Points that appear in the first Data Set but not in the second. In other
5110	words, for setdiff (ds1, ds2), the resulting Dataset contains all the data points Data Point dp1 of the operand ds1
5111	such that there is no Data Point dp2 of ds2 having the same values for homonym Identifier Components.
5112	The operator has the typical behaviour of the "Behaviour of the Set operators" (see the section "Typical

- 5112 The operator has the typical behaviour of the "Behaviour of the Set operators" (see the section "Typical 5113 behaviours of the ML Operators").
- 5114 The automatic Attribute propagation is not applied.
- 5115
- 5116 Examples
- 5117 Given the operand Data Sets DS_1 and DS_2:
- 5118

DS_1						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	10		
2012	G	Total	Total	20		
2012	F	Total	Total	30		
2012	М	Total	Total	40		
2012	I	Total	Total	50		
2012	S	Total	Total	60		

5121

DS_2						
ld_1	ld_2	ld_3	ld_4	Me_1		
2011	В	Total	Total	10		
2012	G	Total	Total	20		
2012	F	Total	Total	30		
2012	М	Total	Total	40		

2012	I	Total	Total	50
2012	S	Total	Total	60

Example 1: DS_r := setdiff (DS_1, DS_2) results in:

5124	

US_r						
ld_1	ld_2	ld_3	ld_4	Me_1		
2012	В	Total	Total	10		

5125

5126 5127

Given the operand Data Sets DS_1 and DS_2 :

DS_1						
ld_1	ld_2	ld_3	Me_1			
R	М	2011	7			
R	F	2011	10			
R	Т	2011	12			

5128 5129

DS_2						
ld_1	ld_2	ld_3	Me_1			
R	М	2011	7			
R	F	2011	10			

5130

5131 5132

Example 2: D

DS_r := setdiff (DS_1 , DS_2)

results in:

DS_r			
ld_1	ld_2	ld_3	Me_1
R	Т	2011	12

5133 5134

5138

5139

5135 Simmetric difference :

symdiff

5136 5137 *Syntax*

symdiff (ds1, ds2)

```
5140 Input parameters
```

- 5141 ds1 the first Data Set in the difference
- 5142 ds2 the second Data Set in the difference

51435144 Examples of valid syntaxes

5145 symdiff (ds_2, ds_3)

5146

5147 Semantics for scalar operations

- 5148 This operator cannot be applied to scalar values.
- 5149 5150
- 5150 *Input parameters type* 5151 ds1, ds2 :: dataset
- 5151 us1, us2 :: 5152
- 5153 Result type

- 5154 result :: dataset
- 51555156 Additional constraints
- 5157 The operand Data Sets have the same Identifier, Measure and Attribute Components.

5158 5159 *Behaviour*

- 5160 The operator implements the symmetric set difference between functions (i.e. Data Sets), interpreting the Data
- 5161 Points of the input Data Sets as the elements in the operand Sets. The operator returns one Data Set, with the
- same Identifier, Measure and Attribute Components as the operand Data Sets, containing the Data Points that appear in the first Data Set but not in the second and the Data Points that appear in the second Data Set but not
- 5165 appear in the first Data Set but not in the second and the Data Points that appear in the second Data 5164 in the first one.
- 5165 Data Points are compared to one another by Identifier Components. For symdiff (ds1, ds2), the resulting Data 5166 Set contains all the Data Points dp1 contained in ds1 for which there is no Data Point dp2 in ds2 with the same 5167 values for homonym Identifier components and all the Data Points dp2 contained in ds2 for which there is no
- values for homonym Identifier components and all the Data Points dp2 contained i
 Data Point dp1 in ds1 with the same values for homonym Identifier Components.
- 5169 The operator has the typical behaviour of the "Behaviour of the Set operators" (see the section "Typical
- 5170 behaviours of the ML Operators").
- 5171 The automatic Attribute propagation is not applied.
- 51725173 *Examples*
- 5174 Given the operand Data Sets DS 1 and DS 2:
- 5175

DS_1	DS_1						
ld_1	ld_2	ld_3	ld_4	Me_1			
2012	В	Total	Total	1			
2012	G	Total	Total	2			
2012	F	Total	Total	3			
2012	М	Total	Total	4			
2012	I	Total	Total	5			
2012	S	Total	Total	6			

5176 5177

DS_2							
ld_1	ld_2	ld_3	ld_4	Me_1			
2011	В	Total	Total	1			
2012	G	Total	Total	2			
2012	F	Total	Total	3			
2012	м	Total	Total	4			
2012	I	Total	Total	5			
2012	S	Total	Total	6			

5178 5179 5180

Example 1:

DS_r := symdiff (DS_1, DS_2)

results in:

DS_r							
ld_1	ld_2	ld_3	ld_4	Me_1			
2012	В	Total	Total	1			
2011	В	Total	Total	1			

5182 VTL-ML - Hierarchical aggregation

5183	Hierarchi	cal roll-up : hierarchy
5184 5185	<i>Syntax</i> hierarchy (op	, hr { condition condComp { , condComp }* } { rule ruleComp } { <u>mode</u> } { <u>input</u> } { <u>output</u> })
5186	<u>mode</u> ::=	non_null non_zero partial_null partial_zero always_null always_zero
5187	<u>input</u> ::=	dataset rule rule_priority
5188	output ::=	computed all
5188 5189	<u>ouipui</u> =	computed an
5190	Input parameter	
5191	op	the operand Data Set.
5192	hr	the hierarchical Ruleset to be applied.
5193	condComp	condComp is a Component of op to be associated (in positional order) to the
5194	00p	conditioning Value Domains or Variables defined in hr (if any).
5195	ruleComp	ruleComp is the Identifier of op to be associated to the rule Value Domain or Variable
5196	•	defined in hr.
5197	mode	this parameter specifies how to treat the possible missing Data Points corresponding to
5198		the Code Items in the right side of a rule and which Data Points are produced in output.
5199		The meaning of the possible values of the parameter is explained below.
5200	<u>input</u>	this parameter specifies the source of the values used as input of the hierarchical rules.
5201		The meaning of the possible values of the parameter is explained below.
5202	<u>output</u>	this parameter specifies the content of the resulting Data Set. The meaning of the
5203		possible values of the parameter is explained below.
5204		
5205	Examples of value	
5206		1, HR1_rule Id_1 non_null all)
5207	hierarchy (DS2	2, HR2 condition Comp_1, Comp_2 rule Id_3 non_zero rule computed)
5208 5200	Comantias for as	alar enerations
5209 5210	Semantics for so	annot be applied to scalar values.
5210 5211	This operator ca	annot be applied to scalar values.
5211	Input parameter	rstune
5212	op ::	dataset { measure <number> _ }</number>
5213	hr ::	name < hierarchical >
5215	condComp ::	name < component >
5216	ruleComp ::	name < dentifier >
5217	•	
5218	Result type	
5219	result ::	dataset {measure <number>_}</number>
5220		
5221	Additional const	
5222		on Value Domains then it is mandatory to specify the condition (if any) and the rule parameters.
5223		Components specified as condComp and ruleComp must belong to the operand op and must take
5224		alue Domains corresponding, in positional order, to the ones specified in the condition and rule
5225	parameter of hr	
5226		on Variables, the specification of condComp and ruleComp is not needed, but they can be
5227 5228		e same if it is desired to show explicitly in the invocation which are the involved Components: in
5228 5220		ondComp and ruleComp must be the same and in the same order as the Variables specified in in and rule signatures of hr.
5229 5230	the condition ar	וע ועוב גוצוומנעו צא טו ווו.
5230 5231	Behaviour	
5251		

The **hierarchy** operator applies the rules of hr to op as specified in the parameters. The operator returns a Data Set with the same Identifiers and the same Measure as **op**. The Attribute propagation rule is applied on the

5234 groups of Data Points which contribute to the same Data Points of the result.

5235 The behaviours relevanto to the different options of the input parameters are the following.

5236	First, the parame	eter input is considered to determine the source of the Data Points used as input of the
5237	Hierarchy. The po	ossible options of the parameter input and the corresponding behaviours are the following:
5238	dataset	For each Rule of the Ruleset and for each item on the right hand side of the Rule, the operator
5239		takes the input Data Points exclusively from the operand op.
5240	rule	For each Rule of the Ruleset and for each item on the right-hand side of the Rule:
5241		• if the item is not defined as the result (left-hand side) of another Rule, the current Rule
5242		takes the input Data Points from the operand op
5243		• if the item is defined as the result of another Rule, the current Rule takes the input Data
5244		Points from the computed output of such other Rule;
5245	rule_priority	For each Rule of the Ruleset and for each item on the right-hand side of the Rule:
5246		• if the item is not defined as the result (left-hand side) of another rule, the current Rule
5247		takes the input Data Points from the operand op.
5248		• if the item is defined as the result of another Rule, then:
5249		o if an expected input Data Point exists in the computed output of such other Rule
5250		and its Measure is not NULL, then the current Rule takes such Data Point;
5251		o if an expected input Data Point does not exist in the computed output of such
5252		other Rule or its measure is NULL, then the current Rule takes the Data Point
5253		from op (if any) having the same values of the Identifiers;
5254		nput is not specified then it is assumed to be rule.
5255		ter mode is considered, to determine the behaviour for missing Data Points and for the Data
5256		duced in the output. The possible options of the parameter mode and the corresponding
5257	behaviours are th	0
5258	non_null	the result Data Point is produced when its computed Measure value is not NULL (i.e., when no
5259		Data Point corresponding to the Code Items of the right side of the rule is missing or has NULL
5260		Measure value); in the calculation, the possible missing Data Points corresponding to the Code
5261		Items of the right side of the rule are considered existing and having a Measure value equal to
5262		NULL;
5263	non_zero	the result Data Point is produced when its computed Measure value is not equal to 0 (zero);
5264		the possible missing Data Points corresponding to the Code Items of the right side of the rule
5265		are considered existing and having a Measure value equal to 0;
5266	partial_null	the result Data Point is produced if at least one Data Point corresponding to the Code Items of
5267		the right side of the rule is found (whichever is its Measure value); the possible missing Data
5268		Points corresponding to the Code Items of the right side of the rule are considered existing and
5269	a satisf serve	having a NULL Measure value;
5270	partial_zero	the result Data Point is produced if at least one Data Point corresponding to the Code Items of
5271 5272		the right side of the rule is found (whichever is its Measure value); the possible missing Data
5272 5273		Points corresponding to the Code Items of the right side of the rule are considered existing and
5275 5274	always_null	having a Measure value equal to 0 (zero); the result Data Point is produced in any case; the possible missing Data Points corresponding
5274 5275	aiways_nun	to the Code Items of the right side of the rule are considered existing and having have a
5275 5276		Measure value equal to NULL;
5270 5277	always_zero	the result Data Point is produced in any case; the possible missing Data Points corresponding
5278	alway5_2010	to the Code Items of the right side of the rule are considered existing and having a Measure
5279		value equal to 0 (zero);
5280	If the parameter r	mode is not specified, then it is assumed to be non_null
5280 5281		
5282	The following tab	le summarizes the behaviour of the options of the parameter "mode"

OPTION of the MODE PARAMETER:	Missing Data Points are considered:	Null Data Points are considered:	Condition for evaluating the rule	Returned Data Points
Non_null	NULL	NULL	If all the involved Data Points are not NULL	Only not NULL Data Points (Zeros are returned too)
Non_zero	Zero	NULL	If at least one of the involved Data Points is <> zero	Only not zero Data Points (NULLS are returned too)

Partial_null	NULL	NULL	If at least one of the involved Data Points is not NULL	Data Points of any value (NULL, not NULL and zero too)
Partial_zero	Zero	NULL	If at least one of the involved Data Points is not NULL	Data Points of any value (NULL, not NULL and zero too)
Always_null	NULL	NULL	Always	Data Points of any value (NULL, not NULL and zero too)
Always_zero	Zero	NULL	Always	Data Points of any value (NULL, not NULL and zero too)

5285 Finally the parameter output is considered, to determine the content of the resulting Data Set. The possible 5286 options of the parameter output and the corresponding behaviours are the following:

- 5287computedthe resulting Data Set contains only the set of Data Points computed according to the Ruleset5288allthe resulting Data Set contains the union between the set of Data Points "R" computed5289according to the Ruleset and the set of Data Points of op that have different combinations of5290values for the Identifiers. In other words, the result is the outcome of the following (virtual)5291expression: union (setdiff (op , R) , R)
- 5292 If the parameter output is not specified then it is assumed to be computed.

5293 5294 Examples 5295 Given the following hierarchical ruleset: 5296 define hierarchical ruleset HR 1 (valuedomain rule VD 1) is 5297 A = J + K + L5298 ; B = M + N + O 5299 C = P + Q5300 D = R + S5301 5302 E = T + U + V5303 F = Y + W + Z5304 G = B + C5305 H = D + E; I = D + G 5306 end hierarchical ruleset 5307 5308

5309 And given the operand Data Set DS_1 (where At_1 is viral and the propagation rule says that the alphabetic 5310 order prevails the NULL prevails on the alphabetic characters and the Attribute value for missing Data Points 5311 is assumed as NULL):

DS_1			
ld_1	ld_2	Me_1	At_1
2010	М	2	Dx
2010	Ν	5	Pz
2010	0	4	Pz
2010	Р	7	Pz
2010	Q	-7	Pz
2010	S	3	Ау
2010	Т	9	Bq
2010	U	NULL	Nj

2010 V 6 Ko

I

Example 1: DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_null) results in:

DS_r			
ld_1	ld_2	Me_1	At_1
2010	В	11	Dx
2010	С	0	Pz
2010	G	19	Dx

Example 2:

DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_zero) results in:

_

5517	
5000	
5320	
00-0	

DS_r			
ld_1	ld_2	Me_1	At_1
2010	В	11	Dx
2010	D	3	NULL
2010	E	NULL	Bq
2010	G	11	Dx
2010	Н	NULL	NULL
2010	I	14	NULL

Example 2: DS_r := hierarchy (DS_1, HR_1 rule Id_2 partial_null) results in:

DS_r			
ld_1	ld_2	Me_1	At_1
2010	В	11	Dx
2010	С	0	Pz
2010	D	NULL	NULL
2010	E	NULL	Bq
2010	G	11	Dx
2010	Н	NULL	NULL
2010	I	NULL	NULL

VTL-ML - Aggregate and Analytic operators

The following table lists the operators that can be invoked in the Aggregate or in the Analytic invocations described below and their main characteristics.

Operator	Description	Allowed invocations	Type of the resulting Measure	Type of the operand Measures
count	number of Data Points	Aggregate Analytic	integer	any
min	minimum value of a set of values	Aggregate Analytic	any	any
max	maximum value of a set of values	Aggregate Analytic	any	any
median	median value of a set of numbers	Aggregate Analytic	number	number
sum	sum of a set of numbers	Aggregate Analytic	number	number
avg	average value of a set of numbers	Aggregate Analytic	number	number
stddev_pop	population standard deviation of a set of numbers	Aggregate Analytic	number	number
stddev_samp	sample standard deviation of a set of numbers	Aggregate Analytic	number	number
var_pop	population variance of a set of numbers	Aggregate Analytic	number	number
var_samp	sample variance of a set of numbers	Aggregate Analytic	number	number
first_value	first value in an ordered set of values	Analytic	any	any
last_value	last value in an ordered set of values	Analytic	any	any
lag	in an ordered set of Data Points, it returns the value(s) taken from a Data Point at a given physical offset prior to the current Data Point	Analytic	any	any
lead	in an ordered set of Data Points, it returns the value(s) taken from a Data Point at a given physical offset beyond the current Data Point	Analytic	any	any
rank	rank (order number) of a Data Point in an ordered set of Data Points	Analytic	integer	any

	ratio_to_report	ratio of a value to the su of values	Im of a set	Analytic	number	number
5332						
5333	Aggregate invocation					
5334 5335	Syntax					
5336	in a Data Set expre	ession:				
5337 5338	<pre>aggregateOperator (firstOperand { , additionalOperand }* { groupingClause })</pre>					
5339		xpression within an aggr				
5340	aggregateOperat	<u>or</u> (firstOperand { , add	litionalOpe	rand }*) { <u>gro</u>	upingClause }	
5341						
5342 5343	aggregateOperat	<u>or</u> ∷= avg count ma	av ∣ modia	n min stdd	w non	
5343 5344	aggregateOperat	<u>or</u> = avg count ma stddev_samp				
5345	groupingClause :	:= { group by grouping			····P	
5346	<u></u>	group except gr				
5347		group all conver		1		
5348		{ having havingCor	ndition_}			
5349						
5350 5351	Input Parameters					
5352	aggregateOperat	or the keyword of	the appred	ate operator to	invoke (e.g., avg, co	unt max
5353	firstOperand					Set for an invocation at
5354	motoporaria					vocation at Component
5355					use in a join operation	
5356	additionalOperan				· ·	ious operators can have
5357		a different num	ber of par	ameters. The n	umber of parameters	, their types and if they
5358		-	-	-	invoked operator	
5359	groupingClause	the following alt	-			
5360		group by		-		he specified Identifiers
5361					fiers not specified are	
5362 5363		group except				of the Identifiers not ified as groupingId are
5363 5364			•	in the result.	The fuentimers speci	neu as groupingiu are
5365		group all			Identifier Component	using conversionExpr
5366		3 . • • • • • • • •		all the resulting	1	
5367	groupingId	Identifier Comp	-	-		dropped (in the group
5368		except clause).				
5369	conversionExpr					a from finer to coarser
5370			e conversio	on operator is a	pplied on an Identifier	of the operand Data
5371	howingCondition	Set op.		and and and	nonent level herring	anly Common anto of the
5372 5373	havingCondition					only Components of the alfilled by the groups of
5373 5374						to TRUE appear in the
5375						pecified through the
5376						(e.g. avg, count, max
5377					A correct example of h	
5378			•	/alue) < 1000		
5379						ndition, because it refers
5380						ount operator is used in
5381		a havingCondit				
5382 5383		:	sum (us g	Toup by lot na	ving count () $>= 10$)	
5385 5384	Examples of valid	svntaxes				
5385	avg (DS_1)	Syntanes				
5296	$avg(DC_1)$					

avg (DS_1 group by Id_1, Id_2) 5386

5388 avg (DS_1 group all time_agg ("Q")) 5389 5390 Semantics for scalar operations 5391 The aggregate operators cannot be applied to scalar values. 5392 5393 *Input parameters type* firstOperand :: 5394 dataset 5395 | component see the type of the additional parameter (if any) of the invoked 5396 additionalOperand :: aggregateOperator. The aggregate operators and their parameters are 5397 described in the following sections. 5398 5399 groupingId :: name < identifier > 5400 conversionExpr :: identifier 5401 havingCondition :: component<boolean> 5402 5403 *Result type:* 5404 result :: dataset 5405 | component 5406 5407 Additional constraints 5408 The Aggregate invocation cannot be nested in other Aggregate or Analytic invocations. 5409 The aggregate operations at component level can be invoked within the **aggr** clause, both as part of a join 5410 operator and the **aggr** operator (see the parameter **aggrExpr** of those operators). The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with the specific basic 5411 5412 scalar types required by the invoked operator (the required basic scalar types are described in the table at the beginning of this chapter and in the sections of the various operators below). 5413 5414 The conversion Expr parameter applies just one conversion operator to just one Identifier belonging to the input 5415 Data Set. The basic scalar type of the Identifier must be compatible with the basic scalar type of the conversion 5416 operator. 5417 If the grouping clause is omitted, then all the input Data Points are aggregated in a single group and the clause 5418 returns a Data Set that contains a single Data Point and has no Identifiers. 5419 5420 Rehaviour 5421 The aggregateOperator is applied as usual to all the measures of the firstOperand Data Set (if invoked at Data 5422 Set level) or to the firstOperand Component of the input Data Set (if invoked at Component level). In both cases, 5423 the operator calculates the required aggregated values for groups of Data Points of the input Data Set. The 5424 groups of Data Points to be aggregated are specified through the groupingClause, which allows the following 5425 alternative options. 5426 the Data Points are grouped by the values of the specified Identifiers. The Identifiers not 5427 group by 5428 specified are dropped in the result. the Data Points are grouped by the values of the Identifiers not specified in the clause. The 5429 group except 5430 specified Identifiers are dropped in the result. converts an Identifier Component using conversionExpr and keeps all the Identifiers. 5431 group all 5432 5433 The **having** clause is used to filter groups in the result by means of an aggregate condition evaluated on the 5434 single groups (for example the minimum number of rows in the group). 5435 If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the operator 5436 returns a Data Set that contains a single Data Point and has no Identifiers. For the invocation at Data Set level, the resulting Data Set has the same Measures as the operand. For the 5437 invocation at Component level, the resulting Data Set has the Measures explicitly calculated (all the other 5438 5439 Measures are dropped because no aggregation behaviour is specified for them). 5440 For invocation at Data Set level, the Attribute propagation rule is applied. For invocation at Component level, the Attributes calculated within the aggr clause are maintained in the result; for all the other Attributes that are 5441 defined as **viral**, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule 5442 5443 section in the User Manual).

5387

avg (DS 1 group except Id 1, Id 2)

As mentioned, the Aggregate invocation at component level can be done within the **aggr** clause, both as part of a Join operator and the **aggr** operator (see the parameter **aggrExpr** of those operators), therefore, for a better comprehension fo the behaviour at Component level, see also those operators.

Examples

5451	Given the Data Set DS_1
5452	

DS_1				
ld_1	ld_2	ld_3	Me_1	At_1
2010	E	ХХ	20	
2010	В	ХХ	1	Н
2010	R	ХХ	1	А
2010	F	YY	23	
2011	E	ХХ	20	Р
2011	В	ZZ	1	Ν
2011	R	YY	-1	Р
2011	F	ХХ	20	Z
2012	L	ZZ	40	Р
2012	E	YY	30	Р

54	54
5 /	55

Example2:

Example1:	DS_r := avg (DS_1 group by Id_1)	provided that At_1 is non viral, results in:
1		1 — /

DS_r		
ld_1	Me_1	
2010	11.25	
2011	10	
2012	35	

Note: the example above can be rewritten equivalently in the following forms:

 $DS_r := sum (DS_1 group by Id_1, Id_3)$

```
DS_r := avg ( DS_1 group except Id_2, Id_3 )
```

DS_r := avg (DS_1#Me_1 group by Id_1)

```
5460
5461
```

provided that At_1 is non viral, results in:

DS_r			
ld_1	ld_3	Me_1	
2010	ХХ	22	
2010	YY	23	
2011	ХХ	40	
2011	ZZ	1	
2011	YY	-1	
2012	ZZ	40	
2012	YY	30	

Example3: DS_r := avg (DS_1) provided that At_1 is non viral results in:

DS_r	
Me_1	
15.5	

5467 5468 Example4:

5469 5470 5471

5472

DS_r := DS_1 [aggr Me_2 := max (Me_1) , Me_3 := min (Me_1) group by Id_1]

provided that At_1 is viral and the first letter in alphabetic order prevails and NULL prevails on all the other characters, results in:

DS_r				
ld_1	Me_2	Me_3	At_1	
2010	23	1		
2011	20	-1	Ν	
2012	40	30	Р	

Analytic invocation 5473

5474 5475	<i>Syntax</i> analyticOperator	(firstOperand { , additionalOperand }* over (<u>analyticClause</u>))
5476		
5477	analyticOperator	∷= avg count max median min stddev_pop
5478		stddev_samp sum var_pop var_samp
5479		first_value lag last_value lead rank ratio_to_report
5480	analyticClause	::= { <u>partitionClause</u> } { <u>orderClause</u> } { <u>windowClause</u> }
5481	partitionClause	::= partition by identifier {, identifier }*
5482	orderClause	::= order by component { asc desc } { , component { asc desc } }*
5483	windowClause	::= { data points range }1 between limitClause and limitClause
5484	limitClause	::= { num preceding num following current data point unbounded preceding
5485		unbounded following } ¹
5486	Parameters	
5487	analyticOperator	the keyword of the analytic operator to invoke (e.g., avg , count , max)
5488	firstOperand	the first operand of the invoked analytic operator (a Data Set for an invocation at Data
5489		Set level or a Component of the input Data Set for an invocation at Component level
5490		within a calc operator or a calc clause in a join operation)
5491 5492	additionalOperan	
5492 5493		a different number of parameters. The number of parameters, their types and if they are mandatory or optional depend on the invoked operator
5494	analyticClause	clause that specifies the analytic behaviour
5495	partitionClause	clause that specifies how to partition Data Points in groups to be analysed separately.
5496		The input Data Set is partitioned according to the values of one or more Identifier
5497		Components. If the clause is omitted, then the Data Set is partitioned by the Identifier
5498		Components that are not specified in the orderClause.
5499	orderClause	clause that specifies how to order the Data Points. The input Data Set is ordered
5500		according to the values of one or more Components, in ascending order if asc is
5501		specified, in descending order if desc is specified, by default in ascending order if the
5502		asc and desc keywords are omitted.
5503 5504	windowClause	clause that specifies how to apply a sliding window on the ordered Data Points. The
5505		keyword data points means that the sliding window includes a certain number of Data Points before and after the current Data Point in the order given by the
5505 5506		orderClause. The keyword range means that the sliding windows includes all the Data
5507		Points whose values are in a certain range in respect to the value, for the current Data
5508		Point, of the Measure which the analytic is applied to.

5509		
	limitClause	clause that can specify either the lower or the upper boundaries of the sliding window.
5510		Each boundary is specified in relationship either to the whole partition or to the
5511		current data point under analysis by using the following keywords:
5512		• unbounded preceding means that the sliding window starts at the first Data Point
5513		of the partition (it make sense only as the first limit of the window)
5514		• unbounded following indicates that the sliding window ends at the last Data Point
5515		of the partition (it makes sense only as the second limit of the window)
5516		• current data point specifies that the window starts or ends at the current Data
5517		Point.
5518		 num preceding specifies either the number of data points to consider preceding
5519		the current data point in the order given by the orderClause (when data points is
5520		specified in the window clause), or the maximum difference to consider, as for the
5520		Measure which the analytic is applied to, between the value of the current Data
5522		Point and the generic other Data Point (when range is specified in the windows
5523		clause).
5525		 num following specifies either the number of data points to consider following the
5525		current data point in the order given by the orderClause (when data points is
5525 5526		specified in the window clause), or the maximum difference to consider, as for the
5520 5527		Measure which the analytic is applied to, between the values of the generic other
5527 5528		Data Point and the current Data Point (when range is specified in the windows
5528 5529		
5529 5530		clause). If the whole windowClause is omitted then the default is data points between
5530 5531		unbounded preceding and current data point.
	identifier	an Identifier Component of the input Data Set
5532 5533		
5535 5534	component	a Component of the input Data Set a scalar <i>number</i>
	num	a scalar number
5535	Evenueles of valid avertain	
5536	Examples of valid syntax	
5537		ition by Id_1 order by Id_2))
5538 5539	sum (DS_1 over (orde	er by IQ_2))
		r by Id_1 data points between 1 preceding and 1 following $)$
		r by Id_1 data points between 1 preceding and 1 following))
5540		r by Id_1 data points between 1 preceding and 1 following)) (Me_1 over(order by Id_1))]
5540 5541	DS_1 [calc M1 := sum	(Me_1 over (order by Id_1))]
5540 5541 5542	DS_1 [calc M1 := sum Semantics for scalar ope	(Me_1 over (order by Id_1))]
5540 5541 5542 5543	DS_1 [calc M1 := sum Semantics for scalar ope	(Me_1 over (order by Id_1))]
5540 5541 5542 5543 5544	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of	(Me_1 over (order by Id_1))]
5540 5541 5542 5543 5544 5545	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type	(Me_1 over (order by Id_1))] rations cannot be applied to scalar values.
5540 5541 5542 5543 5544 5545 5546	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of	(Me_1 over (order by Id_1))] rations cannot be applied to scalar values. dataset
5540 5541 5542 5543 5544 5545 5546 5547	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand ::	(Me_1 over (order by Id_1))] rations cannot be applied to scalar values. dataset component
5540 5541 5542 5543 5544 5545 5546 5546 5547 5548	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type	<pre>(Me_1 over (order by Id_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand ::	<pre>(Me_1 over (order by Id_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections.</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier ::	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier ></pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component ::	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component ></pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier ::	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier ></pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num ::	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component ></pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num ::	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result ::	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints	<pre>(Me_1 over (order by Id_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints The analytic invocation	<pre>(Me_1 over (order by Id_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component cannot be nested in other Aggregate or Analytic invocations.</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints The analytic invocation The analytic operations	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component cannot be nested in other Aggregate or Analytic invocations. at component level can be invoked within the calc clause, both as part of a Join operator</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints The analytic invocation The analytic operator (stall)	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component cannot be nested in other Aggregate or Analytic invocations. at component level can be invoked within the calc clause, both as part of a Join operator see the parameter calcExpr of those operators).</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints The analytic invocation The analytic operator (so The basic scalar types of	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component cannot be nested in other Aggregate or Analytic invocations. at component level can be invoked within the calc clause, both as part of a Join operator see the parameter calcExpr of those operators). of firstOperand and additionalOperand (if any) must be compliant with the specific basic</pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints The analytic invocation The analytic operator (so The basic scalar types of scalar types required by	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component cannot be nested in other Aggregate or Analytic invocations. at component level can be invoked within the calc clause, both as part of a Join operator see the parameter calcExpr of those operators). of firstOperand and additionalOperand (if any) must be compliant with the specific basic y the invoked operator (the required basic scalar types are described in the table at the </pre>
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562	DS_1 [calc M1 := sum Semantics for scalar ope The analytic operators of Input parameters type firstOperand :: additionalOperand :: identifier :: component :: num :: Result type result :: Additional constraints The analytic invocation The analytic operator (so The basic scalar types of scalar types required by	<pre>(Me_1 over (order by ld_1))] rations cannot be applied to scalar values. dataset component see the type of the additional parameter (if any) of the invoked operator. The operators and their parameters are described in the following sections. name < identifier > name < component > integer dataset component cannot be nested in other Aggregate or Analytic invocations. at component level can be invoked within the calc clause, both as part of a Join operator see the parameter calcExpr of those operators). of firstOperand and additionalOperand (if any) must be compliant with the specific basic</pre>

5566 Behaviour

The analytic Operator is applied as usual to all the Measures of the input Data Set (if invoked at Data Set level) or to the specified Component of the input Data Set (if invoked at Component level). In both cases, the operator calculates the desired output values for each Data Point of the input Data Set.

- 5570 The behaviour of the analytic operations can be procedurally described as follows:
- The Data Points of the input Data Set are first partitioned (according to partitionBy) and then ordered (according to orderBy).
- The operation is performed for each Data Point (named "current Data Point") of the input Data Set. For each input Data Point, one output Data Point is returned, having the same values of the Identifiers. The analytic operator is applied to a "window" which includes a set of Data Points of the input Data Set and returns the values of the Measure(s) of the output Data Point.
- If windowClause is not specified, then the set of Data Points which contribute to the analytic operation is 5578 the whole partition which the current Data Point belongs to
 - If windowClause is specified, then the set of Data Points is the one specified by windowClause (see windowsClause and LimitClause explained above).

5581 For the invocation at Data Set level, the resulting Data Set has the same Measures as the input Data Set 5582 firstOperand. For the invocation at Component level, the resulting Data Set has the Measures of the input Data 5583 Set plus the Measures explicitly calculated through the **calc** clause.

5584 For the invocation at Data Set level, the Attribute propagation rule is applied. For invocation at Component level, 5585 the Attributes calculated within the calc clause are maintained in the result; for all the other Attributes that are 5586 defined as viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule 5587 section in the User Manual).

As mentioned, the Analytic invocation at component level can be done within the **calc** clause, both as part of a Join operator and the **calc** operator (see the parameter aggrCalc of those operators), therefore, for a better comprehension fo the behaviour at Component level, see also those operators.

5591 5592 *Examples*

5593

5595

5579

5580

5594 Given the Data Set DS_1:

2012

Example1:

ven the Data	Set DS_1:		
DS_r			
ld_1	ld_2	ld_3	Me_1
2010	E	XX	5
2010	В	XX	-3
2010	R	XX	9
2010	E	YY	13
2011	E	XX	11
2011	В	ZZ	7
2011	E	YY	-1
2011	F	XX	0
2012	L	ZZ	-2

Е

5596 5597

5598 5599

5600 5601

DS_r Id_1 Id_2 Id_3 Me_1

results in:

YΥ

3

DS r := sum (DS 1 over (order by Id 1, Id 2, Id 3 data points between 1 preceding and 1 following))

2010	В	ХХ	2
2010	E	ХХ	15
2010	E	YY	27
2010	R	XX	29
2011	В	ZZ	27
2011	E	XX	17
2011	E	YY	10
2011	F	XX	2
2012	E	YY	1
2012	L	ZZ	1

5602 Counting the number of data points:

count

5603 5604	Aggregate syntax count (dataset	{ groupingClause })	(in a Data Set expression)	
5605	<pre>5 count (component) { groupingClause }</pre>		(in a Component expression within an aggr clause)	
5606			(in an having clause)	
5607				
5608	Analytic syntax			
5609		over (analyticClause))	(in a Data Set expression)	
5610	count (compor	nent over (analyticClause))	(in a Component expression within a calc clause)	
5611				
5612 5613 5614 5615 5616 5617	Input parameters dataset component groupingClause analyticClause	the operand Data Set the operand Component see Aggregate invocation see Analytic invocation		
5618 5619 5620		nalytic invocations above, at the b	eginning of the section.	
5621 5622 5623	<i>Semantics for scalar</i> This operator canno	operations t be applied to scalar values.		
5624 5625 5626 5627	Input parameters type dataset :: component ::	dataset component		
5628 5629 5630 5631	<i>Result type</i> result ::	dataset { measure <integer> component<integer></integer></integer>	int_var }	
5632 5633 5634	<i>Additional constraint</i> None.	ts		
5635 5636 5637 5638	For other details, see	s the number of the input Data Poi e Aggregate and Analytic invocatio		
5639	Examples	_		

5640 Given the Data Set DS_1:

5673	Input parameters type	
5674	dataset ::	dataset
5675	component ::	component
5676		
5677	Result type	
5678	result ::	dataset
5679		component
5680		
5681	Additional constraints	

Additional constraints

5682 None. 5683

5684 **Behaviour**

The operator returns the minimum value of the input values. 5685 For other details, see Aggregate and Analytic invocations. 5686

5687 Examples 5688

5689

Given the Data Set DS_1:

DS_1				
ld_1	ld_2	ld_3	Me_1	
2011	А	ХХ	3	
2011	А	YY	5	
2011	В	YY	7	
2012	А	ХХ	2	
2012	В	YY	4	

5691

5692 5693 Example 1: DS_r := min (DS_1 group by Id_1) results in:

DS_r			
ld_1	Me_1		
2011	3		
2012	2		

Maximum value : 5694

max

5695 5696	Aggregate syntax max (dataset -	{ groupingClause })	(in a Data Set expression)
5697	<pre>max (component) { groupingClause }</pre>		(in a Component expression within an aggr clause)
5698 5699	Analytic syntax		
5700		over (analyticClause))	(in a Data Set expression)
5701	max (component over (analyticClause))		(in a Component expression within a calc clause)
5702			
5703	Input parameters		
5704	dataset	the operand Data Set	
5705	component	the operand Component	
5706	<u>groupingClause</u>	see Aggregate invocation	
5707	analyticClause	see Analytic invocation	

5709 Examples of valid syntaxes

5710 See Aggregate and Analytic invocations above, at the beginning of the section.

- 5711 5712 Semantics for scalar operations
- 5713 This operator cannot be applied to scalar values.

5714	
5715	Input parameters type

5716	dataset ::	dataset
5717	component ::	component
5718		
5719	Result type	
5720	result ::	dataset
5721		component
5722		

Additional constraints 5723

5724 None.

5725 5726 **Behaviour**

The operator returns the maximum of the input values. 5727

- 5728 For other details, see Aggregate and Analytic invocations.
- 5729

5730 *Examples*

5731 Given the Data Set DS_1:

5732

DS_1				
ld_1	ld_2	ld_3	Me_1	
2011	А	ХХ	3	
2011	А	YY	5	
2011	В	YY	7	
2012	А	ХХ	2	
2012	В	YY	4	

5733

5734 5735 Example 1: DS_r := max (DS_1 group by Id_1) results in:

DS_r ld_1 Me_1 2011 7 2012 4

median Median value : 5736

5737 5738	Aggregate syntax median (dataset { groupingClause })	(in a Data Set expression)
5739	median (component) { <u>groupingClause</u> }	(in a Component expression within an aggr clause)
5740 5741 5742	Analytic syntax median (dataset over (partitionClause))	(in a Data Set expression)
5743	median (component over (partitionClause))	(in a Component expression within a calc clause)
5744		

5745	Input parame	ters				
5746	dataset		the operand Data Set			
5747	component	tl	the operand Component			
5748	groupingClau	ise s	see Aggregate invocation			
5749	analyticClaus	se s	ee Analytic inv	vocation		
5750						
5751	Examples of ve					
5752	See Aggregate	e and Analy	tic invocation	s above, at th	e beginning of the section.	
5753						
5754	Semantics for					
5755	This operator	cannot be	applied to sca	lar values.		
5756	_					
5757	Input parame	ters type				
5758	dataset ::		dataset {mea		<u>*>_+}</u>	
5759	component ::		component<	number>		
5760	Dequilt true o					
5761	<i>Result type</i> result ::		datagat (ma	aguna gumh		
5762 5763	result ::	1	<pre>dataset { me component<</pre>		er> _+ }	
5764		I	component<	liuliidei >		
5765	Additional cor	nstraints				
5766	None.	1501 011105				
5767	None.					
5768	Behaviour					
5769	The operator	returns the	e median value	e of the input	values.	
5770	For other deta					
5771		,	5 - 8	, , , , , , , , , , , , , , , , , , ,		
5772	Examples					
5773	Given the Dat	a Set DS_1	:			
5774					_	
	DS_1					
	Id_1 Id_2 Id_3 Me_1					
	2011	A	xx	3		
	2011	А	YY	5	-	
					-	
	2011	B	YY	7		
	2012	A	XX	2		
	2012	В	YY	4		
5775						

DS_r := median (DS_1 group by Id_1) Example 1:

results in:

DS_r			
ld_1	Me_1		
2011	5		
2012	3		

- Sum : 5779 sum
- 5780 Aggregate syntax
- sum (dataset { groupingClause }) 5781
- 5782 sum (component) { groupingClause }

5783

(in a Data Set expression)

(in a Component expression within an **aggr** clause)

5784 5785	Analytic syntax sum (dataset o	ver(<u>analyticClause</u>))	(in a Data Set expression)
5786	<pre>sum (component over (analyticClause))</pre>		(in a Component expression within a calc clause)
5787		,	
5788	Input parameters		
5789	dataset	the operand Data Set	
5790	component	the operand Component	
5791	groupingClause	see Aggregate invocation	
5792	analyticClause	see Analytic invocation	
5793	F lCl; l =(
5794 5795	Examples of valid synt		inning of the costion
5795 5796	See Aggregate and An	alytic invocations above, at the beg	
5797	Semantics for scalar o	nerations	
5798		be applied to scalar values.	
5799	This operator cannot	be applied to scalar values.	
5800	Input parameters type		
5801	dataset ::	<pre>dataset { measure<number> _+ }</number></pre>	
5802	component ::	component <number></number>	
5803		L L	
5804	Result type		
5805	result ::	dataset { measure <number> _+</number>	}
5806		component <number></number>	
5807			
5808	Additional constraints		
5809	None.		
5810			
5811	Behaviour		
5812		the sum of the input values.	
5813	For other details, see	Aggregate and Analytic invocations	5.
5814			
5815	Examples	N 4 .	
5816 5817	Given the Data Set DS	D_1 :	
3017			

DS_1			
ld_1	ld_2	ld_3	Me_1
2011	А	ХХ	3
2011	А	YY	5
2011	В	YY	7
2012	А	ХХ	2
2012	В	YY	4

 $\label{eq:stample1: DS_r:= sum (DS_1 group by Id_1) results in:$

DS_r		
ld_1	Me_1	
2011	15	
2012	6	

5822	Average v	alue :	avg	
5823 5824	Aggregate syntax avg (datase	et { <u>groupingCl</u>	<u>ause</u> })	(in a Data Set expression)
5825	avg (compo	nent) { group	bingClause }	(in a Component expression within an aggr clause)
5826 5827 5828	Analytic syntax avg (datase	et over (<u>anal</u> y	/ticClause))	(in a Data Set expression)
5829	avg (compo	onent over (<u>a</u>	nalyticClause))	(in a Component expression within a calc clause)
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846	Semantics for sca	the open the open see Agg see Anal syntaxes d Analytic invo lar operations not be applied s type	d to scalar values. easure <number> _+}</number>	beginning of the section.
5847 5848 5849 5850 5851 5852	<i>Result type</i> result :: <i>Additional constr</i> None.	compone	neasure <number> _+ nt<number></number></number>	}
5853 5854 5855 5856 5856 5857 5858 5858 5859		, see Aggregate	ge of the input values. and Analytic invocati	
5059				

DS_1			
ld_1	ld_2	ld_3	Me_1
2011	А	XX	3
2011	А	YY	5
2011	В	YY	7
2012	А	ХХ	2
2012	В	YY	4

Example 1: DS_r := avg (DS_1 group by Id_1)

DS_r	
ld_1	Me_1
2011	5

results in:

2012	3
------	---

5864	Population s	standard de	viation	: stddev_pop	
5865 5866	Aggregate syntax stddev_pop (c	dataset { grouping	(in a Data Set expression)		
5867	stddev_pop(component){ grou	upingClause	} (in a Component expression within an aggr clause)	
5868 5869 5870	Analytic syntax	dataset over (<u>ana</u>			
5871	stddev pop (component over (analyticClau	se)) (in a Component expression within a calc clause)	
5872 5873 5874 5875 5876 5877 5878	1213Input parameters14datasetthe operand Data Set15componentthe operand Component16groupingClausesee Aggregate invocation17analyticClausesee Analytic invocation				
5879	Examples of valid sys	ntaxes			
5880			s above, at th	e beginning of the section.	
5881					
5882	Semantics for scalar				
5883					
5884	T I I I I I				
5885	Input parameters type dataset ::			.)	
5886	dataset ::dataset { measure <number> _+ }component ::component<number></number></number>				
5887 5888					
5889	Result type				
5890	result ::	dataset { meas	ure <number< td=""><td>> + }</td></number<>	> + }	
5891		component <r< td=""><td></td><td>_)</td></r<>		_)	
5892		I F			
5893	Additional constrain	ts			
5894	None.				
5895					
5896	Behaviour				
5897					
5898					
5899					
5900	Examples				
5901 5902 5903	5902 Given the Data Set DS_1:				
	DS_1				
	ld_1 ld_	2 Id_3	Me_1		
			1		

5904

2011

2011

2011

2012

2012

А

А

В

А

В

3 5

7 2

4

ΧХ

ΥY

ΥY

ΧХ

ΥY

DS_r		
ld_1	Me_1	
2011	1.633	
2012	1	

5908	Sample stand	dard deviation : st	ddev_samp
5909	Aggregate syntax		
5910	stddev_samp(dataset { <u>groupingClause</u> })	(in a Data Set expression)
5911	stddev_samp (component) { <u>groupingClause</u> }	(in a Component expr. within an aggr clause)
5912			
5913	Analytic syntax		
5914	stddev_samp (dataset over (<u>analyticClause</u>))	(in a Data Set expression)
5915	stddev_samp(component over (<u>analyticClause</u>))	(in a Component expr. within a calc clause)
5916			
5917	Input parameters		
5918	dataset	the operand Data Set	
5919	component	the operand Component	
5920	groupingClause	see Aggregate invocation	
5921	analyticClause	see Analytic invocation	
5922	<u></u>		
5923	Semantics for scalar o	pperations	
5924		be applied to scalar values.	
5925	- F	r r	
5926	Examples of valid syn	taxes	
5927		alytic invocations above, at the beginnir	ng of the section.
5928			
5929	Input parameters typ	0	
5930	dataset ::	dataset { measure <number> _+ }</number>	
5931	component ::	component <number></number>	
5932		·······	
5933	Result type		
5934	result ::	dataset { measure <number> _+ }</number>	
5935		component <number></number>	
5936			
5937	Additional constraint	5	
5938	None.		
5939			
5940	Behaviour		
5941		the "sample standard deviation" of the i	nput values.
5942		Aggregate and Analytic invocations.	
5943	- 51 60101 4044110, 500		
5944	Examples		
5945	Given the Data Set DS	S 1:	
5946			
0,10			

DS_1				
ld_1	ld_2	ld_3	Me_1	
2011	А	ХХ	3	
2011	А	YY	5	
2011	В	YY	7	

2012	А	ХХ	2
2012	В	YY	4

 $\mathsf{DS_r}:=\mathsf{stddev_samp}$ ($\mathsf{DS_1}$ group by $\mathsf{Id_1}$) results in: Example 1:

DS_r		
ld_1	Me_1	
2011	2	
2012	1.4142	

5951	Population va	ariance :	var_	_рор
5952 5953	Aggregate syntax var_pop (datase	et { groupingClause })		(in a Data Set expression)
5954	var_pop (compo	onent) { groupingClause }		(in a Component expression within an aggr clause)
5955 5956 5957	<i>Analytic syntax</i> var_pop (datase	et over (<u>analyticClause</u>)))	(in a Data Set expression)
5958	var_pop (compo	onent over (<u>analyticClaus</u>	<u>e</u>))	(in a Component expression within a calc clause)
 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5986 5987 5988 	Input parameters dataset component groupingClause analyticClause Examples of valid synt See Aggregate and An Semantics for scalar of This operator cannot Input parameters type dataset :: component :: Result type result :: Additional constraints None. Behaviour The operator returns	the operand Data Set the operand Component see Aggregate invocation see Analytic invocation axes alytic invocations above, at perations be applied to scalar values. dataset {measure <numbe component<number> dataset { measure<number> dataset { measure<number> the "population variance" o Aggregate and Analytic invo</number></number></number></numbe 	the beginstrates the be	inning of the section.
5989			_	
	DS_1			

	ld_1	ld_2	ld_3	Me_1
	2011	А	ХХ	3
	2011	А	YY	5
	2011	В	YY	7
ĺ	2012	А	ХХ	2
	2012	В	YY	4

Example 1: DS_r := var_pop (DS_1 group by Id_1) results in:

5990 5991 5992

DS_r				
ld_1	Me_1			
2011	2,6667			
2012	1			

Sample variance : var_samp 5993

5994 5995	Aggregate syntax var samp (data	set { groupingClause })	(in a Data Set expression)
5996	— · ·	ponent) { groupingClause }	(in a Component expression within an aggr clause)
		gioupingolause }	(in a component expression within an aggi clause)
5997 5998	Analytic syntax		
5999		set over (analyticClause))	(in a Data Set expression)
6000	var_samp(com	ponent over (<u>analyticClause</u>))	(in a Component expression within a calc clause)
6001			
6002	Input parameters		
6003	dataset	the operand Data Set	
6004	component	the operand Component	
6005	<u>groupingClause</u>	see Aggregate invocation	
6006	analyticClause	see Analytic invocation	
6007			
6008	Examples of valid synt		
6009	See Aggregate and An	alytic invocations above, at the beg	inning of the section.
6010			
6011	Semantics for scalar of		
6012	This operator cannot	be applied to scalar values.	
6013	_		
6014	Input parameters type		
6015	dataset ::	dataset {measure <number>_+}</number>	
6016	component ::	component <number></number>	
6017	D. It.		
6018	Result type		、
6019	result ::	dataset { measure <number> _+</number>	}
6020		component <number></number>	
6021			
6022	Additional constraints		
6023 6024	None.		
	Dehaviour		
6025	Behaviour	the comple version of the insert of	luga
6026 6027		the sample variance of the input va	
6027	For other details, see	Aggregate and Analytic invocations	
6028			

6029 Examples

6030

6031

Example 1:

DS_r

ld_1

2011

2012

6032

Given the Data Set DS_1

DS_1						
_						
ld_1	Id_2	ld_3	Me_1			
2011	А	XX	3			
2011	А	YY	5			
2011	В	YY	7			
2012	А	ХХ	2			
2012	В	YY	4			

Me_1

4 2

6033 6034

DS_r := var_samp (DS_1 group by Id_1)

results in:

6035

6036

6037	First value :	first_value		
6038 6039	<i>Syntax</i> first_value (dataset	over (analyticClause))	(in a Data Set expression)	
6040	first_value (compor	nent over (analyticClause))	(in a Component expression within a calc clause)	
6041 6042 6043 6044 6045 6046	Input parameters dataset component analyticClause	the operand Data Set the operand Component see Analytic invocation		
6047 6048 6049	<i>Examples of valid syntaxes</i> See Analytic invocation above, at the beginning of the section.			
6050 6051 6052	Semantics for scalar operations This operator cannot be applied to scalar values.			
6053 6054	<i>Input parameters type</i> dataset ::	dataset { measure <scalar> _+ }</scalar>		
6055 6056	component ::	component <scalar></scalar>		
6057	Result type			
6058 6059 6060	result ::	dataset component <scalar></scalar>		
6061	Additional constraints			

The Aggregate invocation is not allowed. 6062

6063

6064 **Behaviour**

6065 The operator returns the first value (in the value order) of the set of Data Points that belong to the same analytic window as the current Data Point. 6066

- 6067 When invoked at Data Set level, it returns the first value for each Measure of the input Data Set. The first value of
- 6068 different Measures can result from different Data Points.
- 6069 When invoked at Component level, it returns the first value of the specified Component.
- 6070 For other details, see Analytic invocation. 6071

6072 *Examples*

6073 Given the Data Set DS_1 :

6074

DS_1						
ld_1	ld_2	ld_3	Me_1	Me_2		
А	ХХ	1993	3	1		
А	хх	1994	4	9		
А	хх	1995	7	5		
А	хх	1996	6	8		
А	YY	1993	9	3		
А	YY	1994	5	4		
А	YY	1995	10	2		
A	YY	1996	2	7		

6075 6076

Example 1:

6077 6078 6079

DS_r := first_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between 1 preceding and 1 following))

6081 results in:

6082

6080

DS_r					
ld_1	ld_2	ld_3	Me_1	Me_2	
А	ХХ	1993	3	1	
А	ХХ	1994	3	1	
А	ХХ	1995	4	5	
А	ХХ	1996	6	5	
А	YY	1993	5	3	
А	YY	1994	5	2	
А	YY	1995	2	2	
А	ΥY	1996	2	2	

6083

6088

6084 Last value : last_value

6085Syntax6086last_value (dataset over (<u>analyticClause</u>))6087last_value (component over (<u>analyticClause</u>))

(in a Data Set expression) (in a Component expression within a **calc** clause)

6089Input parameters6090datasetthe operand Data Set6091componentthe operand Component

6091componentthe operand Component6092analyticClausesee Analytic invocation609360936093

6094	Examples of valid synta	ixes
6095	See Analytic invocation	n above, at the beginning of the section.
6096		
6097	Semantics for scalar op	perations
6098	This operator cannot b	be applied to scalar values.
6099		
6100	Input parameters type	
6101	dataset ::	dataset {measure <scalar> _+}</scalar>
6102	component ::	component <scalar></scalar>
6103		
6104	Result type	
6105	result ::	dataset
6106		component <scalar></scalar>
6107		
6108	Additional constraints	
6400		

6109 The Aggregate invocation is not allowed.6110

6111 Behaviour

6112 The operator returns the last value (in the value order) of the set of Data Points that belong to the same analytic 6113 window as the current Data Point.

- 6114 When invoked at Data Set level, it returns the last value for each Measure of the input Data Set. The last value of 6115 different Measures can result from different Data Points.
- 6116 When invoked at Component level, it returns the last value of the speficied Component.
- 6117 For other details, see Analytic invocation.
- 6118
- 6119 *Examples*6120
- 6121 Given the Data Set DS_1:
- 6122

DS_1						
ld_1	ld_2	ld_3	Me_1	Me_2		
А	ХХ	1993	3	1		
А	ХХ	1994	4	9		
А	хх	1995	7	5		
А	ХХ	1996	6	8		
А	YY	1993	9	3		
А	YY	1994	5	4		
А	YY	1995	10	2		
А	YY	1996	2	7		

6123

6124

6125 *Example 1:*

6126 6127 DS r

6127DS_r := last_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between 1 preceding and61281 following))

6129

6130 results in:

DS_r						
ld_1	ld_2	ld_3	Me_1	Me_2		
А	хх	1993	4	9		
А	хх	1994	7	9		
А	XX	1995	7	9		

А	XX	1996	7	8
А	YY	1993	9	4
А	YY	1994	10	4
А	YY	1995	10	7
А	ΥY	1996	10	7

6133 Lag : lag

6134	Syntax						
6135							
6136	in a Data Set expression:						
6137	<pre>lag (dataset {, offset {, defaultValue } } over ({ partitionClause } orderClause))</pre>						
6138	In a Common on the						
6139	In a Component expression within a calc clause: lag (component {, offset {, defaultValue } } over ({ partitionClause } orderClause))						
6140	lag (component			({ partitionClau		<u>z</u>))	
6141	Input nanamatana						
6142 6143	<i>Input parameters</i> dataset	the energy	Data Cat				
6145 6144		the operand	l Component				
	component offset			the current Data	Doint		
6145 6146	defaultValue				ide of the partitio		
				e onset goes outs	ide of the partitio	JII.	
6147	partitionClause	see Analytic					
6148 6149	orderClause	see Analytic	IIIvocation				
6150	Examples of valid	suntavos					
6151	<i>Examples of valid syntaxes</i> See Analytic invocation above, at the beginning of the section.						
6152	See Milarytic IIIvot		le beginning of t				
6153	Semantics for scalar operations						
6154	This operator can		scalar values				
6155	This operator can	not be applied to	Scalar values.				
6156	Input parameters	tune					
6157	dataset ::	dataset					
6158	component ::	component					
6159	offset ::	integer [val	ue > 01				
6160	default value ::	scalar					
6161		bound					
6162	Result type						
6163	result ::	dataset					
6164		componer	nt				
6165		1 1					
6166	Additional constru	ints					
6167	The Aggregate invocation is not allowed.						
6168	The windowClause of the Analytic invocation syntax is not allowed.						
6169		5	5				
6170	Behaviour						
6171	In the ordered set of Data Points of the current partition, the operator returns the value(s) taken from the Data						
6172	Point at the specified physical offset prior to the current Data Point.						
6173	If defaultValue is not specified then the value returned when the offset goes outside the partition is NULL.						
6174	For other details,	see Analytic invo	cation.		-	-	
6175		-					
6176	Examples						
6177	Given the Data Set	t DS_1 :					
6178							
	DS_1						
	ld_1	ld_2	ld_3	Me_1	Me_2		

А	XX	1993	3	1
А	XX	1994	4	9
А	XX	1995	7	5
А	xx	1996	6	8
А	YY	1993	9	3
А	YY	1994	5	4
А	YY	1995	10	2
А	YY	1996	2	7

6180

6181 6182 Example 1: DS_r := lag (DS_1, 1 over (partition by Id_1, Id_2 order by Id_3))

results in:

DS_r				
ld_1	ld_2	ld_3	Me_1	Me_2
А	XX	1993	NULL	NULL
А	XX	1994	3	1
А	XX	1995	4	9
А	XX	1996	7	5
А	YY	1993	NULL	NULL
А	YY	1994	9	3
А	YY	1995	5	4
А	YY	1996	10	2

6183

6184 lead : lead

6185 *Syntax* 6186

6187 *in a Data Set expression:*

lead (dataset, {offset {, defaultValue } } over ({ partitionClause } orderClause)) 6188 6189 6190 in a Component expression within a **calc** clause: 6191 lead (component, {offset {, defaultValue } } over ({ partitionClause } orderClause)) 6192 6193 *Input parameters* 6194 dataset the operand Data Set 6195 component the operand Component 6196 the relative position beyond the current Data Point offset 6197 defaultValue the value returned when the offset goes outide the partition. 6198 partitionClause see Analytic invocation 6199 orderClause see Analytic invocation 6200 6201 *Examples of valid syntaxes* See Analytic invocation above, at the beginning of the section. 6202 6203 6204 Semantics for scalar operations 6205 This operator cannot be applied to scalar values. 6206 6207 *Input parameters type*

6208	dataset ::	dataset
6209	component ::	component

6210	offset ::	integer [value > 0]
6211	default value ::	scalar
6212		
6213	Result type	
6214	result ::	dataset
6215		component
6216		

Additional constraints 6217

The Aggregate invocation is not allowed. 6218

The windowClause of the Analytic invocation syntax is not allowed. 6219

6221 **Behaviour**

- 6222 In the ordered set of Data Points of the current partition, the operator returns the value(s) taken from the Data 6223 Point at the specified physical offset beyond the current Data Point.
- 6224 If defaultValue is not specified, then the value returned when the offset goes outside the partition is NULL.
- 6225 For other details, see Analytic invocation.

6227 **Examples**

Given the Data Set DS_1 6228

6229

6226

6220

DS_1					
ld_1	ld_2	ld_3	Me_1	Me_2	
А	XX	1993	3	1	
А	XX	1994	4	9	
А	XX	1995	7	5	
А	XX	1996	6	8	
А	YY	1993	9	3	
А	YY	1994	5	4	
А	YY	1995	10	2	
А	ΥY	1996	2	7	

6230

```
6231
```

6232

```
DS_r := lead ( DS_1 , 1 over ( partition by Id_1 , Id_2 order by Id_3 ) )
Example 1:
```

DS_r					
ld_1	ld_2	ld_3	Me_1	Me_2	
А	XX	1993	4	9	
А	XX	1994	7	5	
А	xx	1995	6	8	
А	XX	1996	NULL	NULL	
А	YY	1993	5	4	
А	YY	1994	10	2	
А	YY	1995	2	7	
А	YY	1996	NULL	NULL	

results in:

6233

Rank: rank 6234

6235 **Syntax**

rank (over ({ <u>partitionClause</u> } <u>orderClause</u>)) (*in a Component expression within a* calc *clause*) 6236

6238	Input parameters	
6239	partitionClause	see Analytic invocation
6240	<u>orderClause</u>	see Analytic invocation
6241		
6242	Examples of valid synta	ixes
6243	See Analytic invocation	n above, at the beginning of the section.
6244		
6245	Semantics for scalar op	
6246	This operator cannot b	be applied to scalar values.
6247		
6248	Input parameters type	
6249	dataset ::	dataset
6250	component ::	component
6251		
6252	Result type	
6253	result ::	<pre>dataset { measure<integer> int_var }</integer></pre>
6254		component <integer></integer>
6255		

6256 Additional constraints

- 6257 The invocation at Data Set level is not allowed.
- 6258 The Aggregate invocation is not allowed.
- 6259 The <u>windowClause</u> of the Analytic invocation syntax is not allowed.

6261 Behaviour

The operator returns an order number (rank) for each Data Point, starting from the number 1 and following the order 6262 specified in the orderClause. If some Data Points are in the same order according to the specified orderClause, the 6263 6264 same order number (rank) is assigned and a gap appears in the sequence of the assigned ranks (for example, if four Data Points have the same rank 5, the following assigned rank would be 9). 6265

- 6266 For other details, see Analytic invocation.
- 6267

6260

6268 **Examples**

Given the Data Set DS_1: 6269

6270

DS_1					
ld_1	ld_2	ld_3	Me_1	Me_2	
А	XX	2000	3	1	
А	XX	2001	4	9	
А	XX	2002	7	5	
А	XX	2003	6	8	
А	YY	2000	9	3	
А	YY	2001	5	4	
А	YY	2002	10	2	
А	ΥY	2003	5	7	

6271 6272

Example 1:

```
6275
        DS_r := DS_1 [ calc Me2 := rank ( over ( partition by Id_1 , Id_2 order by Me_1 ) ) ] results in:
```

6276

DS_r				
ld_1	ld_2	Id_3	Me_1	Me_2
А	xx	2000	3	1
А	ХХ	2001	4	2

А	XX	2002	7	4
А	XX	2003	6	3
А	YY	2000	9	3
А	YY	2001	5	1
А	YY	2002	10	4
А	ΥY	2003	5	1

6278 Ratio to report : ratio_to_report

6279 6280	<i>Syntax</i> ratio_to_report (d	ataset over (partitionClause))	(in a Data Set expression)
6281	ratio_to_report(c	omponent over(<u>partitionClause</u>))	(in a Component expr. within a calc clause)
6282			
6283	Input parameters		
6284	dataset	the operand Data Set	
6285	component	the operand Component	
6286	partitionClause	see Analytic invocation	
6287			
6288	Examples of valid syn		
6289	See Analytic invocati	on above, at the beginning of the section.	
6290			
6291	Semantics for scalar		
6292	This operator cannot	t be applied to scalar values.	
6293			
6294	Input parameters typ		
6295	dataset ::	dataset { measure <number>_+ }</number>	
6296	component ::	component <number></number>	
6297			
6298	Result type		
6299	result ::	dataset { measure <number> _+ }</number>	
6300		component <number></number>	
6301			
6302	Additional constraint	-	
6303	The Aggregate invoc		
6304	The <u>orderClause</u> and	d <u>windowClause</u> of the Analytic invocation	n syntax are not allowed.
6305			
6306	Behaviour		
6307			rent Data Point and the sum of the values of the
6308		urrent Data Point belongs to.	
6309	For other details, see	e Analytic invocation.	
6310			

Examples

6312	Given the Data Set DS_1	:

DS_1					
ld_1	ld_2	ld_3	Me_1	Me_2	
А	XX	2000	3	1	
А	ХХ	2001	4	3	
А	ХХ	2002	7	5	
А	хх	2003	6	1	
А	ΥY	2000	12	0	

А	ΥY	2001	8	8
А	YY	2002	6	5
А	YY	2003	14	-3

DS_r := ratio_to_report (DS_1 over (partition by Id_1, Id_2)) Example 1:

results in:

DS_r				
ld_1	ld_2	ld_3	Me_1	Me_2
А	ХХ	2000	0.15	0,1
А	ХХ	2001	0.2	0.3
А	ХХ	2002	0.35	0.5
А	хх	2003	0.3	0.1
А	YY	2000	0.3	0
А	YY	2001	0.2	0.8
А	YY	2002	0.15	0.5
A	YY	2003	0.35	-0.3

⁶³¹⁹ VTL-ML - Data validation operators

6320 check_datapoint

6321	Syntax		
6322	check_datapo	oint(op,dpr{ com	<pre>ponents listComp } { output })</pre>
6323	listComp ::=	= comp { , comp)*
6324	output ::=	invalid all a	all_measures
6325	Input paramete	rs	
6326	ор	the Data Set to ch	eck
6327	dpr	the Data Point Ru	leset to be used
6328 6329 6330 6331	<u>listComp</u>	associated (in po defined on Varia	on Value Domains then listComp is the list of Components of op to be sitional order) to the conditioning Value Domains defined in dpr. If dpr is bles then listComp is the list of Components of op to be associated (in to the conditioning Variables defined in dpr (for documentation purposes).
6332 6333	comp <u>output</u>	Component of op specifies the Data	Points and the Measures of the resulting Data Set:
6334 6335 6336		invalid	the resulting Data Set contains a Data Point for each Data Point of op and each Rule in dpr that evaluates to FALSE on that Data Point. The resulting Data Set has the Measures of op.
6337 6338		all	the resulting Data Set contains a data point for each Data Point of op and each Rule in dpr . The resulting Data Set has the <i>boolean</i> Measure bool_var.
6339 6340 6341		all_measures	the resulting Data Set contains a Data Point for each Data Point of op and each Rule in dpr. The resulting dataset has the Measures of op and the <i>boolean</i> Measure bool_var.
6342		If not specified th	en output is assumed to be invalid. See the Behaviour for further details.
6343 6344 6345 6346 6347	check_datapoi	<i>id syntaxes</i> nt (DS1, DPR invali nt (DS1, DPR all_m calar operations	
6348 6349		annot be applied to s	calar values.
6350	Input paramete	rs type:	
6351		dataset	
6352		name < datapoint >	
6353		name < component >	
6354			
6355	Result type:		
6356	result ::	dataset	
6357	A]]: [:]]]]]]]]]]]]]]]]	ter el contra	
6358 6359	Additional cons		a then it is mandatany to analify listComp. The Components analified in
6360			is then it is mandatory to specify listComp. The Components specified in d op and be defined on the Value Domains specified in the signature of dpr.
6361	•	<u> </u>	he Components specified in the signature of dpr must belong to the operand
6362	op.		ne components specifica in the signature of upr must belong to the operation
6363		l on Variables and lis	tComp is specified then the Components specified in listComp are the same,
6364 6365			l in op (they are provided for documentation purposes).

6366	Bel	havi	iour
0000	~ ~ .		0.011

- It returns a Data Set having the following Components: 6367
- 6368 the Identifier Components of op
- the Identifier Component ruleid whose aim is to identify the Rule that has generated the actual Data 6369 • Point (it contains at least the Rule name specified in dpr ⁸) 6370 6371
 - if the output parameter is **invalid**: the original Measures of op (no *boolean* measure) •
- if the output parameter is **all**: the *boolean* Measure bool var whose value is the result of the evaluation 6372 • of a rule on a Data Point (TRUE, FALSE or NULL). 6373
- if the output parameter is **all measures**: the original measures of op and the *boolean* Measure bool var 6374 • 6375 whose value is the result of the evaluation of a rule on a Data Point (TRUE, FALSE or NULL).
- the Measure errorcode that contains the errorcode specified in the rule 6376 •
- the Measure errorlevel that contains the errorlevel specified in the rule 6377 • 6378

A Data Point of op can produce several Data Points in the resulting Data Set, each of them with a different value 6379 6380 of ruleid. If output is **invalid** then the resulting Data Set contains a Data Point for each Data Point of op and each rule of dpr that evaluates to FALSE. If output is all or all_measures then the resulting Data Set contains a Data 6381 Point for each Data Point of op and each rule of dpr. 6382

6383 **Examples**

- 6384 define datapoint ruleset dpr1 (variable Id_3, Me_1) is
- when Id_3 = "CREDIT" then Me_1 >= 0 errorcode "Bad credit" 6385
- ; when Id_3 = "DEBIT" then Me_1 >= 0 errorcode "Bad debit" 6386
- end datapoint ruleset 6387 6388
- 6389 Given the Data Set DS 1: 6390

DS_1			
ld_1	ld_2	ld_3	Me_1
2011	I	CREDIT	10
2011	I	DEBIT	-2
2012	I	CREDIT	10
2012	I	DEBIT	2

6391 6392

```
6393
```

DS_r := check_datapoint (DS_1, dpr1) results in:	pint (DS_1, dpr1) results in:
--	---------------------------------

DS_r						
ld_1	ld_2	ld_3	ruleid	obs_value	errorcode	errorlevel
2011	I	DEBIT	dpr1_2	-2	Bad debit	

6394 6395 6396

```
DS_r := check_datapoint ( DS_1, dpr1 all )
                                                results in:
```

DS_r						
ld_1	ld_2	ld_3	ruleid	bool_var	errorcode	errorlevel
2011	I	CREDIT	dpr1_1	true		
2011	I	CREDIT	dpr1_2	true		
2011	I	DEBIT	dpr1_1	true		

⁸ The content of **ruleid** maybe personalised in the implementation

2011	I	DEBIT	dpr1_2	false	Bad debit	
2012	I	CREDIT	dpr1_1	true		
2012	I	CREDIT	dpr1_2	true		
2012	I	DEBIT	dpr1_1	true		
2012	I	DEBIT	dpr1_2	true		

check_hierarchy

Syntax

0.00	oy notan	
6401 6402	check_hierarc	<pre>hy (op , hr { condition condComp { , condComp }* } { rule ruleComp } { mode } { input } { output })</pre>
6403	<u>mode</u> ::=	non_null non_zero partial_null partial_zero always_null always_zero
6404	<u>input</u> ::=	dataset dataset_priority
6405 6406 6407	<u>output</u> ::=	invalid all all_measures
6408	Input parameter	
6409	ор	the Data Set to be checked
6410	hr	the hierarchical Ruleset to be used
6411 6412	condComp	condComp is a Component of op to be associated (in positional order) to the conditioning Value Domains or Variables defined in hr (if any).
6413 6414	ruleComp	ruleComp is the Identifier Component of op to be associated to the rule Value Domain or Variable defined in hr.
6415 6416 6417	<u>mode</u>	this parameter specifies how to treat the possible missing Data Points corresponding to the Code Items in the left and right sides of the rules and which Data Points are produced in output. The meaning of the possible values of the parameter is explained below.
6418 6419	<u>input</u>	this parameter specifies the source of the values used as input of the comparisons. The meaning of the possible values of the parameter is explained below.
6420 6421	<u>output</u>	this parameter specifies the structure and the content of the resulting dataset. The meaning of the possible values of the parameter is explained below.
6422		
6423 6424 6425 6426		<i>id syntaxes</i> y(DS1, HR_2 non_null dataset invalid) y(DS1, HR_3 non_zero dataset_priority all)
6427	Input parameter	
6428 6429	op :: hr ::	dataset { measure <number> _ } name < hierarchical ></number>
6430	condComp ::	name < component >
6431 6432	ruleComp ::	name < identifier >
6433	Result type	
6434 6435	result ::	dataset {measure <number> _ }</number>
6435 6436	Additional const	raints
6437 6438	If hr is defined	on Value Domains then it is mandatory to specify the condition (if any in the ruleset hr) and the s. Moreover, the Components specified as condComp and ruleComp must belong to the operand

6439 op and must take values on the Value Domains corresponding, in positional order, to the ones specified in the 6440 condition and rule parameter of hr.

6441 If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but they can be 6442 specified all the same if it is desired to show explicitly in the invocation which are the involved Components: in 6443 this case, the condComp and ruleComp must be the same and in the same order as the Variables specified in in 6444 the condition and rule signatures of hr. 6445

6446 6447 **Behaviour**

6448

6453

6470

6471 6472

6473 6474

6475

6476 6477

6478

6479

6449 The **check hierarchy** operator applies the Rules of the Ruleset hr to check the Code Items Relations between 6450 the Code Items present in op (as for the Code Items Relations, see the User Manual - section "Generic Model for 6451 Variables and Value Domains"). The operator checks if the relation between the left and the right member is fulfilled, giving TRUE in positive case and FALSE in negative case. 6452

6454 The Attribute propagation rule is applied on each group of Data Points which contributes to the same Data Point 6455 of the result. 6456

The behaviours relevanto to the different options of the input parameters are the following. 6457

6458 First, the parameter input is used to determine the source of the Data Points used as input of the 6459 check hierarchy. The possible options of the parameter input and the corresponding behaviours are the 6460 following:

- 6461 dataset this option addresses the case where all the input Data Points of all the Rules of the Ruleset are 6462 expected to be taken from the input Data Set (the operand op).
- 6463 For each Rule of the Ruleset and for each item on the left and right sides of the Rule, the operator takes the input Data Points exclusively from the operand op. 6464
- 6465 dataset_prority this option addresses the case where the input Data Points of all the Rules of the Ruleset are 6466 preferably taken from the input Data Set (the operand op), however if a valid Measure value for an expected Data Point is not found in op, the attempt is made to take it from the computed 6467 6468 output of a (possible) other Rule. 6469
 - For each Rule of the Ruleset and for each item on the left and right sides of the Rule:
 - if the item is not defined as the result (left side) of another Rule that applies the Code Item • relation "is equal to" (=), the current Rule takes the input Data Points from the operand op.
 - if the item is defined as result of another Rule R that applies the Code Item relation "is equal to" (=), then:
 - o if an expected input Data Point exists in op and its Measure is <u>not</u> NULL, then the current Rule takes such Data Point from op;
 - 0 if an expected input Data Point does not exist in op or its measure is NULL, then the current Rule takes the Data Point (if any) that has the same Identifiers' values from the computed output of the other Rule R;

if the parameter input is not specified then it is assumed to be dataset. 6480

6481 Then the parameter mode is considered, to determine the behaviour for missing Data Points and for the Data 6482 Points to be produced in the output. The possible options of the parameter mode and the corresponding 6483 behaviours are the following:

6484 non_null the result Data Point is produced when all the items involved in the comparison exist and have not NULL Measure value (i.e., when no Data Point corresponding to the Code Items of the left 6485 6486 and right sides of the rule is missing or has NULL Measure value); under this option, in 6487 evaluating the comparison, the possible missing Data Points corresponding to the Code Items of the left and right sides of the rule are considered existing and having a NULL Measure value: 6488 6489 the result Data Point is produced when at least one of the items involved in the comparison non_zero 6490 exist and have Measure not equal to 0 (zero); the possible missing Data Points corresponding to the Code Items of the left and right sides of the rule are considered existing and having a 6491 6492 Measure value equal to 0; 6493 the result Data Point is produced if at least one Data Point corresponding to the Code Items of partial null 6494 the left and right sides of the rule is found (whichever is its Measure value); the possible missing Data Points corresponding to the Code Items of the left and right sides of the rule are 6495 6496 considered existing and having a NULL Measure value;

6497	partial_zero	the result Data Point is produced if at least one Data Point corresponding to the Code Items of
6498		the left and right sides of the rule is found (whichever is its Measure value); the possible
6499		missing Data Points corresponding to the Code Items of the left and right sides of the rule are
6500		considered existing and having a Measure value equal to 0 (zero);
6501	always_null	the result Data Point is produced in any case; the possible missing Data Points corresponding
6502		to the Code Items of the left and right sides of the rule are considered existing and having a
6503		Measure value equal to NULL;
6504	always_zero	the result Data Point is produced in any case; the possible missing Data Points corresponding
6505		to the Code Items of the left and right sides of the rule are considered existing and having a
6506		Measure value equal to 0 (zero);

- 6507 If the parameter **mode** is not specified, then it is assumed to be **non_null**.
- 6508 The following table summarizes the behaviour of the options of the parameter "mode"

OPTION of the MODE PARAMETER:	Missing Data Points are considered:	Null Data Points are considered:	Condition for evaluating the rule	Returned Data Points
Non_null	NULL	NULL	If all the involved Data Points are not NULL	Only not NULL Data Points (Zeros are returned too)
Non_zero	Zero	NULL	If at least one of the involved Data Points is <> zero	Only not zero Data Points (NULLS are returned too)
Partial_null	NULL	NULL	If at least one of the involved Data Points is not NULL	Data Points of any value (NULL, not NULL and zero too)
Partial_zero	Zero	NULL	If at least one of the involved Data Points is not NULL	Data Points of any value (NULL, not NULL and zero too)
Always_null	NULL	NULL	Always	Data Points of any value (NULL, not NULL and zero too)
Always_zero	Zero	NULL	Always	Data Points of any value (NULL, not NULL and zero too)

6510

Finally the parameter output is considered, to determine the structure and content of the resulting Data Set. The possible options of the parameter output and the corresponding behaviours are the following:

- 6513allall the Data Points produced by the comparison are returned, both the valid ones (TRUE) and6514the invalid ones (FALSE) besides the possible NULL ones. The result of the comparison is6515returned in the *boolean* Measure bool_var. The original Measure Component of the Data Set op6516is not returned.
- 6517invalidonly the invalid (FALSE) Data Points produced by the comparison are returned. The result of6518the comparison (boolean Measure bool_var) is not returned. The original Measure Component6519of the Data Set op is returned and contains the Measure values taken from the Data Points on6520the left side of the rule.
- 6521all_measuresall the Data Points produced by the comparison are returned, both the valid ones (TRUE) and6522the invalid ones (FALSE) besides the possible NULL ones. The result of the comparison is6523returned in the *boolean* Measure bool_var. The original Measure Component of the Data Set op6524is returned and contains the Measure values taken from the Data Points on the left side of the6525rule.
- 6526 If the parameter output is not specified then it is assumed to be invalid.

6527 In conclusion, the operator returns a Data Set having the following Component
--

- 6528 all the Identifier Components of op
- the additional Identifier Component ruleid, whose aim is to identify the Rule that has generated the 6529 • 6530 actual Data Point (it contains at least the Rule name specified in hr ⁹)
 - if the output parameter is all: the boolean Measure bool var whose values are the result of the • evaluation of the Rules (TRUE, FALSE or NULL).
 - if the output parameter is invalid: the original Measure of op, whose values are taken from the Measure • values of the Data Points of the left side of the Rule
- if the output parameter is all measures: the *boolean* Measure bool var, whose value is the result of the 6535 • evaluation of a Rule on a Data Point (TRUE, FALSE or NULL), and the original Measure of op, whose 6536 values are taken from the Measure values of the Data Points of the left side of the Rule 6537
- the Measure imbalance, which contains the difference between the Measure values of the Data Points on 6538 • the left side of the Rule and the Measure values of the corresponding calculated Data Points on the right 6539 6540 side of the Rule
 - the Measure errorcode, which contains the errorcode value specified in the Rule •
 - the Measure errorlevel, which contains the errorlevel value specified in the Rule •

Note that a generic Data Point of op can produce several Data Points in the resulting Data Set, one for each Rule 6544 6545 in which the Data Point appears as the left member of the comparison.

6548 Examples

6531

6532

6533

6534

6541

6542

6543

6546 6547

6550

6552

See also the examples in **define hierarchical ruleset**. 6549

Given the following hierarchical ruleset: 6551

					、 .
6553	define hierarchical ruleset	HR 1(valuedomain rule	VD 1) is

		— 、		— /
6554	R010 :	A = J + K + L		errorlevel 5
6555	; R020 :	B = M + N + O		errorlevel 5
6556	; R030 :	C = P + Q	errorcode XX	errorlevel 5
6557	; R040 :	D = R + S		errorlevel 1
6558	; R060 :	F=Y+W+Z		errorlevel 7
6559	; R070 :	G = B + C		
6560	; R080 :	H = D + E		errorlevel 0
6561	; R090 :	I = D + G	errorcode YY	errorlevel 0
6562	; R100 :	M >= N		errorlevel 5
6563	; R110 :	M <= G		errorlevel 5
6564	end hierarchical rules	set		

And given the operand Data Set DS 1 (where At 1 is viral and the propagation rule says that the alphabetic 6566 order prevails the NULL prevails on the alphabetic characters and the Attribute value for missing Data Points is 6567 assumed as NULL): 6568

6569

6565

DS_1						
ld_1	ld_2	Me_1				
2010	A	5				
2010	В	11				
2010	С	0				
2010	G	19				
2010	н	NULL				
2010	I	14				
2010	М	2				

⁹ The content of **ruleid** maybe personalised in the implementation

2010	N	5
2010	0	4
2010	Р	7
2010	Q	-7
2010	S	3
2010	Т	9
2010	U	NULL
2010	V	6

6572

Example 1: DS_r := check_hierarchy (DS_1, HR_1 rule Id_2 partial_null all) results in:

0372

DS_r						
ld_1	ld_2	ruleid	Bool_var	imbalance	errorcode	errorlevel
2010	А	R010	NULL	NULL	NULL	5
2010	В	R020	TRUE	0	NULL	5
2010	С	R030	TRUE	0	XX	5
2010	D	R040	NULL	NULL	NULL	1
2010	E	R050	NULL	NULL	NULL	0
2010	F	R060	NULL	NULL	NULL	7
2010	G	R070	FALSE	8	NULL	NULL
2010	Н	R080	NULL	NULL	NULL	0
2010	I	R090	NULL	NULL	YY	0
2010	М	R100	FALSE	-3	NULL	5
2010	М	R110	TRUE	-17	NULL	5

6573 6574

6575 check

6576 *Syntax*

6577	<pre>check (op { errorcode errorcode } { errorlevel errorlevel } { imbalance imbalance } { output })</pre>				
6578	output ::=	invalid all			
6579	Input parameter	S			
6580	ор	a boolean Data Set (a boolean condition expressed on one or more Data Sets)			
6581	errorcode	the error code to be produced when the condition evaluates to FALSE. It must be a v			

- 6581errorcodethe error code to be produced when the condition evaluates to FALSE. It must be a valid value6582of the errorcode_vd Value Domain (or string if the errorcode_vd Value Domain is not found).6583It can be a Data Set or a scalar. If not specified then errorcode is NULL.6584errorlevel6585the error level to be produced when the condition evaluates to FALSE. It must be a valid value6584errorlevel6585of the orrorlevel vd Value Domain (or integer if the orrorcode vd Value Domain is not found)
- 6585of the errorlevel_vd Value Domain (or *integer* if the errorcode_vd Value Domain is not found).6586It can be a Data Set or a *scalar*. If not specified then errorlevel is NULL.6587imbalance6588It can be computed. imbalance is a *numeric* mono-measure Data Set with the same6588Identifiers of op. If not specified then imbalance is NULL.
- 6589 <u>output</u> specifies which Data Points are returned in the resulting Data Set:

6590		invalid	returns the Data Points of op for which the condition evaluates to
6591			FALSE
6592		all	returns all Data Points of op
6593		If not specified th	nen output is all .
6594	Examples of va	lid syntaxes	
6595	check(DS1>	DS2 errorcode mye	errorcode errorlevel myerrorlevel imbalance DS1 - DS2 invalid)
6596	Input paramet	ers type:	
6597 6598 6599 6600	op :: errorcode :: errorlevel :: imbalance ::	dataset errorcode_vd errorlevel_vd number	
6601	Result type:		
6602	result ::	dataset	
6603	Additional con	straints	
6604	op has exactly	a <i>boolean</i> Measure C	omponent.
6605	Behaviour		
6606	It returns a Da	ta Set having the follo	owing components:
6607	• the Ide	entifier Components	of op
6608	• a bool	<i>ean</i> Measure named I	bool_var that contains the result of the evaluation of the <i>boolean</i> dataset op
6609	• the Me	easure imbalance tha	t contains the specified imbalance
6610	• the Me	easure errorcode that	t contains the specified errorcode
6611	• the Me	easure errorlevel that	t contains the specified errorlevel
6612 6613	If output is all FALSE are retu		re returned. If output is invalid then only the Data Points where bool_var is
6614 6615 6616	Examples		
6617 6618		Sets DS_1 and DS	_2:
	DS 1		

DS_1							
ld_1	ld_2	Me_1					
2010	I	1					
2011	I	2					
2012	I	10					
2013	Ι	4					
2014	Ι	5					
2015	I	6					
2010	D	25					
2011	D	35					
2012	D	45					
2013	D	55					
2014	D	50					

2015	D	75						
DS_2	DS_2							
ld_1	Id_2	Me_1						
2010	I	9						
2011	I	2						
2012	I	10						
2013	I	7						
2014	I	5						
2015	I	6						
2010	D	50						
2011	D	35						
2012	D	40						
2013	D	55						
2014	D	65						
2015	D	75						

Example 1:

 $DS_r := check (DS1 \ge DS2 imbalance DS1 - DS2)$

returns:

DS_r							
ld_1	ld_2	bool_var	imbalance	errorcode	errorlevel		
2010	I	FALSE	-8	NULL	NULL		
2011	I	TRUE	0	NULL	NULL		
2012	I	TRUE	0	NULL	NULL		
2013	I	FALSE	-3	NULL	NULL		
2014	I	TRUE	0	NULL	NULL		
2015	I	TRUE	0	NULL	NULL		
2010	D	FALSE	-25	NULL	NULL		
2011	D	TRUE	0	NULL	NULL		
2012	D	TRUE	5	NULL	NULL		
2013	D	TRUE	0	NULL	NULL		
2014	D	FALSE	-15	NULL	NULL		
2015	D	TRUE	0	NULL	NULL		

6624 VTL-ML - Conditional operators

6625	if-then-el	se: if
6626		
6627	Syntax	
6628		ition then thenOperand else elseOperand
6629		· ·
6630	Input parameter	rs
6631		
6632	condition	a Boolean condition (dataset, component or scalar)
6633	thenOperand	the operand returned when condition evaluates to true
6634	elseOperand	the operand returned when condition evaluates to false
6635		
6636	Examples of vali	
6637	if A > B then A	else B
6638		
6639	Semantics for sc	
6640		returns thenOperand if condition evaluates to true, elseOperand otherwise. For example,
6641	considering the	
6642	ıf x1 >	x2 then 2 else 5,
6643		for $x1 = 3$, $x2 = 0$ it returns 2
6644		for $x1 = 0$, $x2 = 3$ it returns 5
6645	In much Davana at as	
6646 6647	Input Parameter condition ::	
6648	condition ::	dataset { measure <boolean> _ } component<boolean></boolean></boolean>
6649		boolean
6650	thenOperand ::	
6651	inchoperana	component
6652		scalar
6653	elseOperand ::	
6654		component
6655		scalar
6656		
6657	Result type	
6658	result ::	dataset
6659		component<
6660		scalar
6661		
6662	Additional const	
6663		e operands thenOperand and elseOperand must be of the same scalar type.
6664		he operation is at scalar level, thenOperand and elseOperand are scalar then condition must be
6665		lar too (a <i>boolean</i> scalar).
6666		the operation is at Component level, at least one of thenOperand and elseOperand is a
6667		nponent (the other one can be scalar) and condition must be a Component too (a <i>boolean</i>
6668		nponent); thenOperand, elseOperand and the other Components referenced in condition must
6669		ong to the same Data Set.
6670		he operation is at Data Set level, at least one of thenOperand and elseOperand is a Data Set (the
6671 6672		er one can be scalar) and condition must be a Data Set too (having a unique <i>boolean</i> Measure) I must have the same Identifiers as thenOperand or/and ElseOperand
6673	and	• If thenOperand and elseOperand are both Data Sets then they must have the same
6674		Components in the same roles
6675		 If one of thenOperand and elseOperand is a Data Set and the other one is a scalar, the
6676		Measures of the operand Data Set must be all of the same scalar type as the scalar operand.
6677		
6678		

6679 *Behaviour*

- For operations at Component level, the operation is applied for each Data Point of the unique input Data Set, the
 if-then-else operator returns the value from the thenOperand Component when condition evaluates to true,
 otherwise it returns the value from the elseOperand Component. If one of the operands thenOperand or
 elseOperand is scalar, such a scalar value can be returned depending on the outcome of the condition.
- For operations at Data Set level, the **if-then-else** operator returns the Data Point from thenOperand when the
 Data Point of condition having the same Identifiers' values evaluates to **true**, and returns the Data Point from
 elseOperand otherwise. If one of the operands thenOperand or elseOperand is scalar, such a scalar value can
 be returned (depending on the outcome of the condition) and in this case it feeds the values of all the Measures
 of the result Data Point.
- 6689 The behaviour for two Data Sets can be procedurally explained as follows. First the condition Data Set is 6690 evaluated, then its true Data Points are inner joined with thenOperand and its false Data Points are inner 6691 joined with elseOperand, finally the union is made of these two partial results (the condition ensures that there 6692 cannot be conflicts in the union).

6693 6694

Examples

6695 6696 6697

Example 1: given the operand Data Sets DS_cond, DS_1, DS_2:

DS_cond						
ld_1	ld_2	ld_3	Id_4	Me_1		
2012	В	Total	М	5451780		
2012	В	Total	F	5643070		
2012	G	Total	М	5449803		
2012	G	Total	F	5673231		
2012	S	Total	М	23099012		
2012	S	Total	F	23719207		
2012	F	Total	М	31616281		
2012	F	Total	F	33671580		
2012	I	Total	М	28726599		
2012	I	Total	F	30667608		
2012	А	Total	М	NULL		
2012	А	Total	F	NULL		

6698

DS_1				
ld_1	ld_2	ld_3	ld_4	Me_1
2012	S	Total	F	25.8
2012	F	Total	F	NULL
2012	I	Total	F	20.9
2012	А	Total	М	6.3

6699

DS_2					
ld_1	ld_2	ld_3	ld_4	Me_1	
2012	В	Total	М	0.12	
2012	G	Total	М	22.5	
2012	S	Total	М	23.7	
2012	А	Total	F	NULL	

DS_r := if (DS_cond#ld_4 = "F") then DS_1 else DS_2

returns:

DS_r				
ld_1	ld_2	ld_3	ld_4	Me_1
2012	S	Total	F	25.8
2012	F	Total	F	NULL
2012	Ι	Total	F	20.9

6703 Nvl : nvl

6704	Syntax	
6705	nvl (op1 , op2)
6706		
6707	Input paramet	ters
6708	op1	the first operand
6709	op2	the second operand
6710		
6711	Examples of vo	alid syntaxes
6712	nvl (ds1#m1,	, 0)
6713		
6714		scalar operations
6715	The operator	nvl returns op2 when op1 is null, otherwise op1. For example:
6716		nvl (5, 0) returns 5
6717		nvl (null, 0) returns 0
6718		
6719	Input Paramet	ters type
6720	op1 ::	dataset
6721		component <scalar></scalar>
6722		scalar
6723		
6724	op2 ::	dataset
6725		component
6726		<scalar></scalar>
6727		
6728	Result type	
6729	result ::	dataset
6730		component
6731		scalar
6732		
6733	Additional con	
6734		2 are scalar values then they must be of the same type.
6735		2 are Components then they must be of the same type.
6736	If op1 and op2	2 are Data Sets then they must have the same Components.
6737		
6738	Behaviour	
6739	-	nvl returns the value from op2 when the value from op1 is null, otherwise it returns the value from
6740	op1.	
6741		has the typical behaviour of the operators applicable on two scalar values or Data Sets or Data Set
6742	Components.	
6743	Also the follow	ving statement gives the same result: if isnull (op1) then op2 else op1
6744		
6745	Examples	
6746	F 1 4	Circuit the invest Date Cat. DC 4
6747	Example 1:	Given the input Data Set DS_1
6748		

DS_1					
ld_1	ld_2	ld_3	Id_4	Me_1	
2012	В	Total	Total	11094850	
2012	G	Total	Total	11123034	
2012	S	Total	Total	NULL	
2012	Μ	Total	Total	417546	
2012	F	Total	Total	5401267	
2012	Ν	Total	Total	NULL	

DS_r := nvl (DS_1, 0)

returns:

DS_r					
ld_1	ld_2	ld_3	ld_4	Me_1	
2012	В	Total	Total	11094850	
2012	G	Total	Total	11123034	
2012	S	Total	Total	0	
2012	Μ	Total	Total	417546	
2012	F	Total	Total	5401267	
2012	Ν	Total	Total	0	

6752 VTL-ML - Clause operators

6753	Filtering Data	Points :	filter
6754			
6755	Syntax		
6756	op [filter filte	erCondition]	
6757			
6758	Input parameters		
6759	ор	the operand	
6760	filterCondition	the filter condition	
6761			
6762	Examples of valid syntax		
6763	DS_1 [filter Me_3 > 0	-	
6764	DS_1 [filter Me_3 + N	/le_2 <= 0]	
6765			
6766	Semantics for scalar ope		
6767	This operator cannot be	e applied to scalar values.	
6768			
6769	Input parameters type:		
6770	op ::	dataset	
6771	filterCondition ::	component <boolean></boolean>	
6772	D. L.		
6773	Result type:	1	
6774	result ::	dataset	
6775			
6776	Additional constraints:		
6777	None.		
6778			
6779	Behaviour		
6780	-		a <i>boolean</i> Component expression (filterCondition) and filters the
6781	input Data Points acco	rding to the evaluation o	f the condition. When the expression is TRUE the Data Point is

dition. When the expression is TRUE the Data Point is kept in the result, otherwise it is not kept (in other words, it filters out the Data Points of the operand Data Set 6782 for which filterCondition condition evaluates to FALSE or NULL). 6783

Examples 6785

6784

6786

6787 Given the Data Set DS_1:

DS_1						
ld_1	ld_2	ld_3	Me_1	At_1		
1	А	ХХ	2	E		
1	А	YY	2	F		
1	В	ХХ	20	F		
1	В	YY	1	F		
2	А	ХХ	4	E		
2	А	YY	9	F		

6788

 $DS_r := DS_1$ [filter Id_1 = 1 and Me_1 < 10] results in: Example1:

DS_r				
ld_1	ld_2	ld_3	Me_1	At_1

Ī					_	
	1	A	XX	2	E	
	1	A	YY	2	F	
	1	В	YY	1	F	
(Calcu	lation o	f a Com	ponent :	calc	
S	Syntax	op i calc { ca	lcRole } calc	Comp := calcE	xpr { { calcRole	<pre>} calcComp := calcExpr }*]</pre>
				-		
			<u>kole</u> ::= ide n	tifier measu	are attribute	viral attribute
		ameters	perand			
	op calcRole			ned to a Comp	onent to be calcu	llated
	calcCom			ponent to be ca		
С	calcExpr				aving only Compo	onents of the input Data Sets as operands,
		used	to calculate a	Component		
г		f lid a	~~~~~			
		of valid synto alc Me_3 :=	axes Me_1 + Me_	21		
-	00_1[0					
S	Semantic	s for scalar of	perations			
Τ	This opei	ator cannot	be applied to	scalar values.		
		ameters type				
	op :: poloCom	datas		+ \		
	calcCom calcExpr		e < componen onent <scalar< td=""><td></td><td></td><td></td></scalar<>			
U	aicespi	comp	onent-scala	-		
F	Result typ	pe:				
	esult ::	datas	et			
		l constraints				
					n Identifier comp	
A	All the co	mponents us	ed in calcCo	mp must belon	g to the operand	Data Set op.
Ľ	Behaviou					
			es new Iden	tifier Measure	or Attribute Cou	nponents on the basis of sub-expression
						ndent sub-expression. It is possible to sp
						attribute, or viral attribute, therefore the
С	clause ca	n be used als	so to change	the role of a Co	mponent when p	oossible. The keyword viral allows contro
	the virality of the calculated Attributes (for the attribute propagation rule see the User Manual). When the role					
						e operand Data Set then it maintains its ro
					Set then its role i	
	The calcExpr sub-expressions are independent one another, they can only reference Components of the inp Data Set and cannot use Components generated, for example, by other calcExpr. If the calculated Component is					
	new Component, it is added to the output Data Set. If the Calculated component is a Measure or an Attribute th					
	already exists in the input Data Set, the calculated values overwrite the original values. If the calculate					
	Component is an Identifier that already exists in the input Data Set, an exception is raised because overwriting					
а	an Identi	fier Compon				l behaviour. Analytic invocations can be
i	n the ca	lc clause.				
,	Zugar I.					
E	Examples	i				

DS_1			
ld_1	ld_2	ld_3	Me_1
1	А	CA	20
1	В	CA	2
2	A	CA	2

6845 6846 Example1:

DS_r := DS_1 [calc Me_1:= Me_1 * 2]

results in:

DS_r			
ld_1	ld_2	ld_3	Me_1
1	А	CA	40
1	В	CA	4
2	А	CA	4

6847 6848 6849

Example2: DS_r := DS_1 [calc attribute At_1:= "EP"]

results in:

DS_r					
ld_1	ld_2	ld_3	Me_1	At_1	
1	А	CA	40	EP	
1	В	CA	4	EP	
2	A	CA	4	EP	

6850

Aggregation: 6851 aggr 6852 6853 **Syntax** op [aggr aggrClause { groupingClause }] 6854 6855 6856 aggrClause ::= { aggrRole } aggrComp := aggrExpr {, { <u>aggrRrole</u> } aggrComp:= aggrExpr }* 6857 6858 6859 groupingClause ::= { group by groupingId {, gropuingId }* 6860 | group except groupingId {, groupingId }* | group all conversionExpr }¹ 6861 6862 { having havingCondition } 6863 aggrRole::= measure | attribute | viral attribute 6864 6865 6866 6867 **Input Parameters** 6868 the operand ор 6869 aggrClause clause that specifies the required aggregations, i.e., the aggregated Components to be 6870 calculated, their roles and their calculation algorithm, to be applied on the joined and 6871 filtered Data Points the role of the aggregated Component to be calculated 6872 aggrRole 6873 aggrComp the name of the aggregated Component to be calculated; this is a dependent Component 6874 of the result (Measure or Attribute, not Identifier)

6875 6876 6877 6878	aggrExpr	expression at component level, having only Components of the input Data Sets as operands, which invokes an aggregate operator (e.g. avg , count , max , see also the corresponding sections) to perform the desired aggregation. Note that the count operator is used in an aggrClause without parameters, e.g.:			
6879		DS_1 [a	uggr Me_1 := count() group by Id_1)]		
6880	groupingClause	-	ernative grouping options:		
6881 6882	<u></u>	group by	the Data Points are grouped by the values of the specified Identifiers (groupingId). The Identifiers not specified are dropped in the result.		
6883 6884 6885		group except	the Data Points are grouped by the values of the Identifiers not specified as groupingId. The Identifiers specified as groupingId are dropped in the result.		
6886 6887		group all	converts the values of an Identifier Component using conversionExpr and keeps all the resulting Identifiers.		
6888 6889	groupingId	Identifier Compo except clause).	nent to be kept (in the group by clause) or dropped (in the group		
6890 6891 6892	conversionExpr	specifies a conve	rsion operator (e.g., time_agg) to convert an Identifier from finer to ity. The conversion operator is applied on an Identifier of the operand		
6893 6894 6895 6896 6897 6898	havingCondition	a condition (boolean expression) at component level, having only Components of the input Data Sets as operands (and possibly constants), to be fulfilled by the groups of Data Points: only groups for which havingCondition evaluates to TRUE appear in the result. The havingCondition refers to the groups specified through the groupingClause, therefore it must invoke aggregate operators (e.g. avg , count , max , see also the section Aggregate invocation). A correct example of havingCondition is:			
6899		I	max(obs_value) < 1000		
6900 6901 6902		refers to the valu	lition obs_value < 1000 is not a right havingCondition, because it es of the single Data Points and not to the groups. The count operator gCondition without parameters, e.g.:		
6903		:	sum (DS_1 group by id1 having count () >= 10)		
6904 6905 6906 6907 6908	Examples of valid syntax DS_1 [aggr M1 := min DS_1 [aggr M1 := min	(Me_1) group by			
6908 6909 6910	Semantics for scalar ope This operator cannot be		values.		
6911					
6912	Input parameters type:				
6913	op ::	dataset			
6914	aggrComp ::	name < compone			
6915	aggrExpr ::	component <scala< td=""><td></td></scala<>			
6916 6917	groupingId ::	name <identifier identifier<scalar:< td=""><td></td></scalar:<></identifier 			
6917 6918	conversionExpr :: havingCondition ::				
6918 6919	navingconulion ::	component <bool< td=""><td></td></bool<>			
6920	Result type:				
6920	result :: dataset				
6922					
6923 6924	Additional constraints	tor cannot ha tha m	amo of an Identifier component		
6924 6925			ame of an Identifier component. t belong to the operand Data Set op.		
6925 6926			st one conversion operator to just one Identifier belonging to the input		
6920 6927			itifier must be compatible with the basic scalar type of the conversion		
6928	operator.	ar type of the fuel	inner must be compatible with the basic scalar type of the conversion		
6929	operator.				
5/2/					

6930 Behaviour

The operator **aggr** calculates aggregations of dependent Components (Measures or Attributes) on the basis of sub-expressions at Component level. Each Component is calculated through an independent sub-expression. It is possible to specify the role of the calculated Component among **measure attribute**, or **viral attribute**. The substring **viral** allows to control the virality of Attributes, if the Attribute propagation rule is adopted (see the User Manual). When the role is omitted, the following rule is applied: if the component exists in the operand Data Set then it maintains its role; if the component does not exist in the operand Data Set then its role is Measure.

The aggrExpr sub-expressions are independent of one another, they can only reference Components of the input Data Set and cannot use Components generated, for example, by other aggrExpr sub-expressions. The **aggr** computed Measures and Attributes are the only Measures and Attributes returned in the output Data Set (plus the possible viral Attributes). The sub-expressions must contain only Aggregate operators, which are able to compute an aggregated Value relevant to a group of Data Points. The groups of Data Points to be aggregated are specified through the groupingClause, which allows the following alternative options.

- 6943group bythe Data Points are grouped by the values of the specified Identifiers. The Identifiers not6944specified are dropped in the result.
- 6945group exceptthe Data Points are grouped by the values of the Identifiers not specified in the clause. The6946specified Identifiers are dropped in the result.
- 6947 **group all** converts an Identifier Component using conversionExpr and keeps all the other Identifiers.

The **having** clause is used to filter groups in the result by means of an aggregate condition evaluated on the single groups (for example the minimum number of Data Points in the group).

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the clausereturns a Data Set that contains a single Data Point and has no Identifiers.

The Attributes calculated through the **aggr** clauses are maintained in the result. For all the other Attributes that
are defined as **viral**, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation
Rule section in the User Manual).

Examples

6958 6959

6957

6948

6960 Given the Data Set DS_1:

DS_1					
ld_1	ld_2	ld_3	Me_1		
1	А	XX	0		
1	А	YY	2		
1	В	ХХ	3		
1	В	YY	5		
2	А	ХХ	7		
2	А	YY	2		

6961 6962 6963

DS_r := DS_1 [aggr Me_1:= sum(Me_1) group by Id_1 , Id_2] results in:

DS_r					
ld_1	ld_2	Me_1			
1	А	2			
1	В	8			
2	А	9			

6964 6965

Example2: DS_r := DS_1 [aggr Me_3:= min(Me_1) group except Id_3] results in:

6966

DS_r

Example1:

ld_1	ld_2	Me_3
1	А	0
1	В	3
2	A	2

Example3:

6969 6970

6971

6972

DS_r					
ld_1	ld_2	Me_1	Me_2		
1	В	8	5		
2	А	9	7		

DS r := DS 1 [aggr Me 1:= sum(Me 1), Me 2 := max(Me 1)

results in:

group by Id_1 , Id_2

having avg(Me 1) > 2]

6973

6974 Maintaining Components: keep

6975 6976 **Syntax** 6977 op [keep comp {, comp }*] 6978 6979 Input parameters 6980 op the operand 6981 comp a component to keep 6982 6983 Examples of valid syntaxes DS_1 [keep Me_2, Me_3] 6984 6985 6986 Semantics for scalar operations 6987 This operator cannot be applied to scalar values. 6988 6989 *Input parameters type:* 6990 op :: dataset comp :: 6991 name < component > 6992 6993 *Result type:* 6994 result :: dataset 6995 Additional constraints: 6996 6997 All the Components comp must belong to the input Data Set op. 6998 The Components comp cannot be Identifiers in op. 6999 7000 **Behaviour** 7001 The operator takes as input a Data Set (op) and some Component names of such a Data Set (comp). These Components can be Measures or Attributes of op but not Identifiers. The operator maintains the specified 7002 Components, drops all the other dependent Components of the Data Set (Measures and Attributes) and 7003 7004 maintains the independent Components (Identifiers) unchanged. This operation corresponds to a projection in 7005 the usual relational join semantics (specifying which columns will be projected in among Measures and 7006 Attributes).

7007

7008

7009 *Examples*7010

7011 Given the Data Set DS_1:

DS_1					
ld_1	ld_2	ld_3	Me_1	Me_2	At_1
2010	А	ХХ	20	36	E
2010	А	YY	4	9	F
2010	В	ХХ	9	10	F

Example1: DS_r := DS_1 [keep Me_1] results in:

7	0	1	4

DS_r					
ld_1	ld_2	ld_3	Me_1		
2010	А	XX	20		
2010	А	YY	4		
2010	В	XX	9		

7015

7016 Removal of Components: drop

7017		
7018	Syntax	
7019	ор	[drop comp { , comp }*]
7020		
7021	Input paran	neters
7022	ор	the operand
7023 7024	comp	a Component to drop
7025	Examples of	f valid syntaxes
7026		o Me_2, Me_3]
7027		
7028	Semantics fo	or scalar operations
7029	This operat	or cannot be applied to scalar values.
7030		
7031	Input paran	neters type:
7032	op ::	dataset
7033	comp ::	name < component >
7034		
7035	Result type:	
7036	result ::	dataset
7037		
7038	Additional c	onstraints:
7039		ponents comp must belong to the input Data Set op .
7040	The Compo	nents comp cannot be Identifiers in op.
7041		
7042	Behaviour	
7043		or takes as input a Data Set (op) and some Component names of such a Data Set (comp). These
7044		s can be Measures or Attributes of op but not Identifiers. The operator drops the specified
7045		s and maintains all the other Components of the Data Set. This operation corresponds to a projection
7046	in the usual	relational join semantics (specifying which columns will be projected out).

70477048 *Examples*

7049

7050Given the Data Set DS_1:

DS_1					
ld_1	ld_2	ld_3	Me_1	At_1	
2010	А	ХХ	20	E	
2010	А	YY	4	F	
2010	В	ХХ	9	F	

Example1:

7054

 $DS_r := DS_1 [drop At_1]$

results in:

DS_r					
ld_1	ld_2	ld_3	Me_1		
2010	А	ХХ	20		
2010	А	YY	4		
2010	В	XX	9		

Change of Component name : 7055 rename

7056 **Syntax** op [rename comp_from to comp_to {, comp_from to comp_to}*] 7057 7058 7059 Input Parameters 7060 the operand qo 7061 comp from the original name of the Component to rename 7062 the new name of the Component after the renaming comp_to 7063 Examples of valid syntaxes 7064 DS 1 [rename Me 2 to Me 3] 7065 7066 7067 Semantics for scalar operations 7068 This operator cannot be applied to scalar values. 7069 7070 Input Parameters type 7071 op :: dataset 7072 comp_from :: name < component > 7073 comp to :: name < component > 7074 7075 *Result type* 7076 result :: dataset 7077 7078 Additional constraints 7079

The corresponding pairs of Components before and after the renaming (dsc_from and dsc_to) must be defined on the same Value Domain and the same Value Domain Subset. 7080

The components used in dsc_from must belong to the input Data Set and the component used in the dsc_to 7081 7082 cannot have the same names as other Components of the result Data Set. 7083

Behaviour

7085 The operator assigns new names to one or more Components (Identifier, Measure or Attribute Components). The resulting Data Set, after renaming the specified Components, must have unique names of all its Components 7086 (otherwise a runtime error is raised). Only the Component name is changed and not the Component Values, 7087 therefore the new Component must be defined on the same Value Domain and Value Domain Subset as the 7088 7089 original Component (see also the IM in the User Manual). If the name of a Component defined on a different Value Domain or Set is assigned, an error is raised. In other words, rename is a transformation of the variable 7090 7091 without any change in its values.

7092

Examples 7095

7096

7097

Given the Data Set DS_1:

DS_1					
ld_1	ld_2	ld_3	Me_1	At_1	
1	В	ХХ	20	F	
1	В	YY	1	F	
2	А	ХХ	4	E	
2	А	YY	9	F	

7098 7099

Example1: DS_r := DS_1 [rename Me_1 to Me_2, At_1 to At_2] results in:

7100

DS_r				
ld_1	ld_2	ld_3	Me_2	At_2
1	В	ХХ	20	F
1	В	YY	1	F
2	А	ХХ	4	E
2	А	YY	9	F

Pivoting : pivot 7101

7102		
7103	Syntax	
7104	op [pivo	t identifier, measure]
7105		
7106	Input parameters	
7107	ор	the operand
7108	identifier	the Identifier Component of op to pivot
7109	measure	the Measure Component of op to pivot
7110		
7111		
7112	Examples of valid	syntaxes
7113	DS_1 [pivot Id_2	2, Me_1]
7114		
7115	Semantics for scal	ar operations
7116	This operator can	not be applied to scalar values.
7117		
7118	Input Parameters	type
7119	op ::	dataset
7120	identifier ::	name < identifier >
7121	measure ::	name < measure >
7122		
7123	Result type	
7124	result ::	dataset
7125		
7126	Additional constru	lints
7127	The Measures cre	ated by the operator according to the behaviour described below must be defined on the same
7128	Value Domain as t	he input Measure.
7129		

7130 **Behaviour**

- The operator transposes several Data Points of the operand Data Set into a single Data Point of the resulting Data
- 7132 Set. The semantics of **pivot** can be procedurally described as follows.
- 7133
- It creates a virtual Data Set VDS as a copy of op
 It drops the Identifier Component identifier and
 - 2. It drops the Identifier Component identifier and all the Measure Components from VDS.
- 7136 3. It groups VDS by the values of the remaining Identifiers.
- For each distinct value of identifier in op, it adds a corresponding measure to VDS, named as the value of identifier. These Measures are initialized with the NULL value.
- For each Data Point of op, it finds the Data Point of VDS having the same values as for the common Identifiers and assigns the value of measure (taken from the current Data Point of op) to the Measure of VDS having the same name as the value of identifier (taken from the Data Point of op).
- The result of the last step is the output of the operation. 7144

Note that **pivot** may create Measures whose names are non-regular (i.e. they may contain special characters, reserved keywords, etc.) according to the rules about the artefact names described in the User Manual (see the section "The artefact names" in the chapter "VTL Transformations"). As said in the User Manual, those names must be quoted to be referenced within an expression.

7150 *Examples*

Given the Data Set DS_1:

7	1	5	3

7151

'	100	

DS_1				
ld_1	ld_2	Me_1	At_1	
1	А	5	E	
1	В	2	F	
1	С	7	F	
2	А	3	E	
2	В	4	E	
2	С	9	F	

7154 7155

7156

Example1: DS_r := Ds_1 [pivot Id_2, Me_1] results in:

DS_r			
ld_1	А	В	С
1	5	2	7
2	3	4	9

7157

7158 Unpivoting : unpivot

7159		
7160	Syntax	
7161	op [unpivo	t identifier, measure]
7162		
7163	Input parameters	
7164	ор	the dataset operand
7165	identifier	the Identifier Component to be created
7166	measure	the Measure Component to be created
7167		

7168Examples of valid syntaxes

9	DS [unpivot	ld_5, Me_	3]		
0	G				
1	Semantics for scalar operations This operator cannot be applied to scalar values.				
2	This operator	r cannot be a	pplied to scalar	values.	
3	I D				
4	Input Parame				
5	op ::		lataset		
6 7	identifier ::		name < identifier		
	measure ::	n	name < measure	>	
	D. Ivi				
	Result type				
	result ::	C	lataset		
	A .] .]:(:				
	Additional co			the second Webs	
	All the measu	ires of op mu	ist be defined on	i the same Valu	e Domain.
	Dehaviour				
	Behaviour	oporator tw	anenosos a sina	la Data Daint d	f the operand Data Set into several Data Deints of the
			ics can be proce		f the operand Data Set into several Data Points of the
	Tesuit Data se	et. Its semant	ics call be proce		eu as follows.
	1. It cre	ates a virtua	l Data Set VDS a	s a conv of on	
					ne Measure Component measure to VDS.
					I of op whose value is not NULL, the operator inserts a
	Data Point into VDS whose values are assigned as specified in the following points 4. The VDS Identifiers other than identifier are assigned the same values as the corresponding Identifiers of				
		p Data Point			gned the same values as the corresponding identifiers of
				alue equal to th	e name of the Measure M of op
					e value of the Measure M of op
	0. The	v D3 measure	= is assigned a v	alue equal to th	e value of the measure mol op
	The result of	the last sten	is the output of	the operation	
	The result of	the last step	is the output of	the operation.	
	When a Meas	aure is NIILL	then unnivot da	oes not create a	Data Point for that Measure.
					tly symmetric operations, i.e., in some cases the unpivot
					te exactly the original Data Set (before pivoting).
	operation up	price to the p	Noted Data Set		te enacty the original bata bet (before proting)
	Examples				
	Entimprob				
	Given the Dat	a Set DS 1:			
	DS_1				
	ld_1	Α	В	С	
	1	5	2	7	
	2	3	4	9	
		1	1	I	

Example1:

7211

DS_r := DS_1 [unpivot Id_2, Me_1] results in:

DS_r			
ld_1	ld_2	Me_1	
1	А	5	
1	В	2	
1	С	7	
2	А	3	

2	В	4
2	С	9

7213	Subs	pace : sub
7214		
7215	Syntax	
7216		<pre>op [sub identifier = value { , identifier = value }*]</pre>
7217		
7218	Input pa	irameters
7219	ор	dataset
7220	identifie	
7221	value	valid value for identifier
7222		
7223		es of valid syntaxes
7224	DS_r :=	DS_1 [Id_2 = "A", Id_5 = 1]
7225		
7226		cs for scalar operations
7227	This ope	erator cannot be applied to scalar values.
7228	Innut De	
7229		irameters type
7230 7231	op :: identifie	dataset r :: name < identifier >
7232	value ::	scalar
7233	value	Stalal
7234	Result ty	ine and the second s
7235	result ::	dataset
7236		
7237	Addition	al constraints
7238		cified Identifier Components identifier(s) must belong to the input Data Set op.
7239		entifier Component can be specified only once.
7240		cified value must be an allowed value for identifier.
7241	_	
7242		
7243	Behavio	ur
7244		
7245		rator returns a Data Set in a subspace of the one of the input Dataset. Its behaviour can be procedurally
7246	describe	ed as follows:
7247		
7248		It creates a virtual Data Set VDS as a copy of op
7249	Ζ.	It maintains the Data Points of VDS for which identifier = value (for all the specified identifier) and
7250	2	eliminates all the Data Points for which identifier <> value (even for only one specified identifier)
7251 7252	3.	It projects out ("drops", in VTL terms) all the identifier(s)
7253	The res	alt of the last step is the output of the operation.
7254	The rest	
7255	The res	ulting Data Set has the Identifier Components that are not specified as identifier(s) and has the same
7256		e and Attribute Components of the input Data Set.
7257	Treasury	
7258	The res	ult Data Set does not violate the functional constraint because after the filter of the step 2, all the
7259		ng identifier(s) do not contain the same Values for all the Data Points. In other words, given that the input
7260		t is a 1 st order function and therefore does not contain duplicates, the result Data Set is a 1 st order
7261	function	as well. To show this, let $K_1, \ldots, K_m, \ldots, K_n$ be the Identifier components for the generic input Data Set DS.
7262		uppose that K_1, \ldots, K_m are assigned to fixed values by using the subspace operator. A duplicate could arise
7263		n the result there are two Data Points DP_{r1} and DP_{r2} having the same value for K_{m+1},\ldots,K_n , but this is
7264		ble since such Data Points had same K_1, \ldots, K_m in the original Data Set DS, which did not contain
7265	duplicat	ies.

If we consider the vector space of Data Points individuated by the n-uples of Identifier components of a Data Set DS(K₁,...,K_n,...) (along, e.g., with the operators of sum and multiplication), we have that the subspace operator actually performs a subsetting of such space into another space with fewer Identifiers. This can be also seen as the equivalent of a *dice* operation performed on hyper-cubes in multi-dimensional data warehousing.

Examples

7275
7276

Given t	he Data	Set DS_1:					
DS_2	1						
Id_	1	ld_2	Id_3 Me			At_1	
1		A	XX	20		F	
1	1 A		YY	1		F	
1		В	XX	4		E	
1		В	YY	9		F	
2	2 A		XX	7		F	
2		А	YY	5		E	
2	2 В		XX	12		F	
2		В	YY	15		F	
DS_I	r						
I	ld_3	Me_1	At_	1			
	XX	20	F				
	YY	1	F				
Examp		DS_r := D	S_1 [sub lo	l_1 = 1, ld	_2 = "B	", Id_3 = "	YY"] results in:
	Me_1						
	9	F					
Ехатр	le 3:	DS_r := D	S_1[sub	d_2 = "A"]	+ DS_	1 [sub ld	2 = "B" results in:
Assum	-	At_1 is viral	and that in t	he propaga	tion rul	e the grea	ter value prevails, results in:
	ld_1	ld_3	Me_1	At	1		
	1	XX	24		_* :		
	-	~~~	27				

F

F

F

7280
7281

YΥ

ΧХ

YΥ